Abstract:
본 발명은 양친매성 고분자 또는 공액 고분자 용액에 탄소나노튜브를 첨가한 후, 혼합하여 탄소나노튜브를 코팅하는 시키는 단계; 상기 코팅된 탄소나노튜브와 금속염을 반응시켜 탄소나노튜브/금속 분말을 제조하는 단계; 및 탄소나노튜브/금속 분말을 기지(matrix) 금속 분말과 혼합한 후, 소결하는 단계;를 포함하는 탄소나노튜브/금속 복합재료의 제조 방법에 관한 것이다.
Abstract:
Introduced in the present invention are a TiAgN coating layer, a TiAgN coating method, and a TiAgN coating apparatus. The TiAgN coating layer is coated applied onto a base material having a surface roughness of 0.05-0.1 um by a plasma coating method, and is formed by periodically applying and stopping an Ag source under the state of maintaining nitrogen atmospheric gas and applying a Ti source. In the coating step, the Ti source and the Ag source are arranged to face each other across the base material. A jig for fixating the base material is coated while rotating in a velocity of 20-50 rpm. Moreover, in the coating step, the Ag source is applied and stopped in a period of 30-240 seconds.
Abstract:
본 발명은 코팅층 형성 공정상 공정 압력을 조절하여 표면 모폴로지 미세화 및 Ag 함량을 증가시켜 고온에서 표면 특성(저마찰 및 내마모 특성)을 향상시킬 수 있는 코팅층 표면 처리 방법을 제공하는데 그 목적이 있다. 상기한 목적을 달성하기 위해 본 발명에 따른 코팅층 표면 처리 방법은 피코팅재를 챔버 내에서 가열하는 히팅 단계; 상기 가열된 피코팅재의 표면에서 이물질을 제거하는 클리닝 단계; 상기 피코팅재의 표면에 버퍼층을 형성하는 단계; 상기 버퍼층 위에 코팅층을 형성하는 단계;를 포함하여 이루어지며, 상기 코팅층 형성 시 공정 압력을 조절하여 고온에서 표면 특성을 향상시킬 수 있도록 된 것을 특징으로 한다.
Abstract:
Fe를 주성분으로 하고, Al : 10~20wt%, Mn : 5~20wt%, C : 0.5~1wt%, Cr : 1~3wt%, Si : 1~3wt%, Mg : 2~4wt%, P : 0.02%이하(0은 불포함), S : 0.01%이하(0은 불포함) 및 기타 불가결한 불순물을 포함하는 저비중합금 및 그 제조방법이 소개된다.
Abstract:
PURPOSE: A method for forming a low friction coating layer is provided to improve low frictional properties by forming Ag particles on an existing coating layer with controlling bias voltage and sputter power. CONSTITUTION: A method for forming a low frication coating layer comprises a coating step, a fraction increasing step, and a nanoparticle forming step. In the coating step, TiAgN coating layer is formed on the surface of a basic material using Ti arc sources and Ag sputtering sources. In the fraction increasing step, Ag fraction on the surface increases by boosting sputtering power and bias voltage for a certain period of time. In the nanoparticle forming step, Ag nanoparticles are formed on the surface by being maintained in a temperature rise section for a certain period of time. [Reference numerals] (AA) Gas (N); (BB) Arc ion source (Ti); (CC) Sputter ion source (Ag)
Abstract:
저철손 전기강판 제조방법이 개시된다. 본 실시예에 따른 저철손 전기강판 제조방법은 2.0~4.0% wt.% Si, 0.02~2.0% wt.% Al, 0.1~0.7 wt.% Mn, 잔부 Fe 및 기타 불순물로 조성된 강 슬라브를 열간압연하는 단계; 열간압연된 강판에 Al-Si 합금을 클래딩하는 단계; 클래딩된 강판을 권취하는 단계; 권취된 강판을 최초소둔 및 산세하는 단계; 산세된 강판을 냉간압연하는 단계; 및 냉간압연된 강판을 최종소둔하는 단계를 포함하는 것을 특징으로 한다.
Abstract:
PURPOSE: A low-core loss electrical steel sheet manufacturing method is provided to obtain an electrical steel sheet with reduced loss of Eddy current and increased core efficiency by cladding a hot rolled steel sheet with Al-Si alloy. CONSTITUTION: A low-core loss electrical steel sheet manufacturing method comprises the steps of: hot rolling steel slab which comprises 2.0-4.0wt.% of Si, 0.02-2.0wt.% of Al, 0.1-0.7wt.% of Mn, and the remaining amount of Fe and inevitable impurities(S110), cladding the hot rolled steel sheet with Al-Si alloy(S120), winding the cladded steel sheet(S130), firstly annealing and pickling the wound steel sheet(S140), cold rolling the pickled steel sheet(S150), and finally annealing the cold rolled steel sheet(S160). [Reference numerals] (S110) Hot rolling step; (S120) Cladding step; (S130) Winding step; (S140) Initial annealing and pickling step; (S150) Cold rolling step; (S160) Final annealing step
Abstract:
PURPOSE: Provided a paste-phase composition for filling into a joining region of aluminum panels in automobiles, which shows excellent adhesion performance to an aluminum panels. CONSTITUTION: The paste-phase composition comprises 7-15 wt% of an acryl-denatured epoxy, 3-15 wt% of a dimer-denatured epoxy-based resin, 5-20 wt% of a bisphenol-A type epoxy-based resin, 1-3 wt% of a hygroscopic agent, 3-15 wt% of a curing agent and curable accelerator, 15-40 wt% of a filling agent and 3-9 wt% of conductive carbon black, wherein the composition further additionally comprises 5-25 wt% of a nitrile rubber-denatured epoxy-based resin and 10-30 wt% of carboxy terminated butadiene acrylonitrile copolymer(CTBN)-denatured epoxy resin and has a viscosity of 400,000-800,000 cps/20 deg.C.