Abstract:
In a particle multi-beam structuring apparatus for forming a pattern on a target's surface using a beam of electrically charged particles, during exposure steps the particle beam is produced, directed through a pattern definition means producing a patterned particle beam composed of multiple beamlets, and projected by an optical column including a controllable deflection means onto the target surface to form, at a nominal location on the target, a beam image comprising the image of defining structures in the pattern definition means. The beam image's nominal location relative to the target is changed between exposure steps. The actual location of the beam image is varied within each exposure step around the nominal location, through a set of locations realizing a distribution of locations within the image plane around a mean location coinciding with the nominal location, thus introducing an additional blur which is homogenous over the entire beam image.
Abstract:
An improved aperture arrangement in a device for defining a pattern on a target, for use in a particle-beam exposure apparatus, by being irradiated with a beam of electrically charged particles and allowing passage of the beam only through a plurality of apertures. The device includes an aperture array having a plurality of apertures of identical shape defining the shape and relative position of beamlets permeating the apertures. A blanking device switches off the passage of selected beamlets permeating the apertures and defined by them. The apertures are arranged on the aperture array according to an arrangement deviating from a regular arrangement by small deviations, adjusting for distortions caused by the particle-beam exposure apparatus, and the size of the apertures of the aperture array differs across the aperture array in order to allow for an adjustment of the current radiated on the target through the apertures and the corresponding openings.
Abstract:
A multi-beam pattern definition device for use in a particle-beam processing or inspection apparatus, which is set up to be irradiated with a beam of electrically charged particles and allow passage of the beam through a plurality of apertures thus forming beamlets, which are imaged onto a target. A deflection array has a plurality of electrostatic deflector electrodes for each beamlet. Each deflector electrode can be applied an electrostatic potential individually. Counter electrodes are electrically connected to a counter potential independently of the deflection array through a counter-electrode array. The counter potentials may be a common ground potential or individual potentials in order to improve system reliability. In conjunction with an associated counter electrode, each deflector electrode deflects its beamlet sufficiently to deflect the beamlet off its nominal path when applied an activating voltage against the respective counter electrode.
Abstract:
A particle-beam projection processing apparatus for irradiating a target, with an illumination system for forming a wide-area illuminating beam of energetic electrically charged particles; a pattern definition means for positioning an aperture pattern in the path of the illuminating beam; and a projection system for projecting the beam thus patterned onto a target to be positioned after the projection system. A foil located across the path of the patterned beam is positioned between the pattern definition means and the position of the target at a location close to an image of the aperture pattern formed by the projection system.
Abstract:
In a particle-optical projection system a pattern is imaged onto a target by means of energetic electrically charged particles. The pattern is represented in a patterned beam of said charged particles emerging from the object plane through at least one cross-over; it is imaged into an image with a given size and distortion. To compensate for the Z-deviation of the image position from the actual positioning of the target (Z denotes an axial coordinate substantially parallel to the optical axis), without changing the size of the image, the system includes a position detector for measuring the Z-position of several locations of the target, and a controller for calculating modifications of selected lens parameters of the final particle-optical lens and controlling said lens parameters according to said modifications.
Abstract:
In a pattern definition device for use in a particle-beam exposure apparatus a plurality of blanking openings (910) are arranged within a pattern definition field (bf) composed of a plurality of staggered lines (b1) of blanking openings, each provided with a deflection means controllable by a blanking signal (911); for the lines of blanking openings, according to a partition of the blanking openings of a line into several groups (g4,g5,g6), the deflection means of the blanking openings of each group are fed a common group blanking signal (911), and the group blanking signal of each group of a line is fed to the blanking means and connected to the respective blanking openings independently of the group blanking signals of the other groups of the same line.
Abstract:
A multi-beam pattern definition device (102) for use in a particle-beam processing or inspection apparatus is configured to be irradiated with a beam (lp,bp) of electrically charged particles so as to form a number of beamlets to be imaged to a target. An aperture array means (202) comprises at least two sets of apertures (221, 222) for defining respective beamlets (b1-b5), wherein the sets of apertures comprise a plurality of apertures arranged in interlacing arrangements and the apertures of different sets are offset to each other by a common displacement vector (d12). An opening array means (201) has a plurality of openings (210) configured for the passage of a subset of beamlets corresponding to one of the sets of apertures but lacking openings (being opaque to the beam) at locations corresponding to the other sets of apertures. A positioning means shifts the aperture array means relative to the opening array means in order to selectively bring one of the sets of apertures into alignment with the openings in the opening array means.
Abstract:
A beam manipulating arrangement for a multi beam application using charged particles comprises a multi-aperture plate having plural apertures traversed by beams of charged particles. A frame portion of the multi-aperture plate is heated to reduce temperature gradients within the multi-aperture plate. Further, a heat emissivity of a surface of the multi-aperture plate may be higher in some regions as compared to other regions in view of also reducing temperature gradients.
Abstract:
For maskless irradiating a target with a beam of energetic electrically charged particles using a pattern definition means with a plurality of apertures and imaging the apertures in the pattern definition means onto a target which moves (v) relative to the pattern definition means laterally to the axis, the location of the image is moved along with the target, for a pixel exposure period within which a distance of relative movement of the target is covered which is at least a multiple of the width (w) of the aperture images as measured on the target, and after said pixel exposure period the location of the beam image is changed, which change of location generally compensates the overall movement of the location of the beam image.
Abstract:
A charged particle beam exposure system has a blanking aperture array (31) having groups of apertures (53) controlled by shift registers (75), wherein different inputs (C) to the shift registers influence a different number of apertures. Charged particle beamlets traversing the apertures are scanned across a charged particle sensitive substrate in synchronism with a clock signal of the shift registers.