Abstract:
A technique to enable secure application and data integrity within a computer system. In one embodiment, one or more secure enclaves are established in which an application and data may be stored and executed.
Abstract:
Methods and systems are provided to control transitions between a virtual machine (VM) and Virtual Machine Monitor (VMM). A processor uses state action indicators to load and/or store associated elements of machine state before completing the transition. The state action indicators may be stored in a Virtual Machine Control Structure (VMCS), predetermined, and/or calculated dynamically. In some embodiments, the values loaded can be directly acquired from the VMCS, predetermined and/or calculated dynamically. In some embodiments, the values stored may be acquired directly from machine state, predetermined and/or calculated dynamically.
Abstract:
In one embodiment, fault information relating to a fault associated with the operation of guest software is received. Further, a determination is made as to whether the fault information satisfies one or more fault filtering criteria. If the determination is positive, the guest software is permitted to disregard the fault.
Abstract:
In one embodiment, a method for resolving address space conflicts includes detecting that a guest operating system attempts to access a region occupied by a first portion of a virtual machine monitor and relocating the first portion of the virtual machine monitor within the first address space to allow the guest operating system to access the region previously occupied by the first portion of the virtual machine monitor.
Abstract:
An access transaction generated by a processor is configured using a configuration storage containing a configuration setting. The processor has a normal execution mode and an isolated execution mode. The access transaction has access information. Access to the configuration storage is controlled. An access grant signal is generated using the configuration setting and the access information. The access grant signal indicates if the access transaction is valid.
Abstract:
A processor of an aspect includes a decode unit to decode an exception handler return instruction. The processor also includes an exception handler return execution unit coupled with the decode unit. The exception handler return execution unit, responsive to the exception handler return instruction, is to not configure the processor to enable delivery of a subsequently received nonmaskable interrupt (NMI) to an NMI handler if an exception, which corresponds to the exception handler return instruction, was taken within the NMI handler. The exception handler return execution unit, responsive to the exception handler return instruction, is to configure the processor to enable the delivery of the subsequently received NMI to the NMI handler if the exception was not taken within the NMI handler. Other processors, methods, systems, and instructions are disclosed.
Abstract:
Secure memory repartitioning technologies are described. A processor includes a processor core and a memory controller coupled between the processor core and main memory. The main memory includes a memory range including a section of convertible pages that are convertible to secure pages or non-secure pages. The processor core, in response to a page conversion instruction, is to determine from the instruction a convertible page in the memory range to be converted and convert the convertible page to be at least one of a secure page or a non-secure page. The memory range may also include a hardware reserved section that is convertible in response to a section conversion instruction.
Abstract:
Methods and apparatus are disclosed for efficient TLB (translation look-aside buffer) shoot-downs for heterogeneous devices sharing virtual memory in a multi-core system. Embodiments of an apparatus for efficient TLB shoot-downs may include a TLB to store virtual address translation entries, and a memory management unit, coupled with the TLB, to maintain PASID (process address space identifier) state entries corresponding to the virtual address translation entries. The PASID state entries may include an active reference state and a lazy-invalidation state. The memory management unit may perform atomic modification of PASID state entries responsive to receiving PASID state update requests from devices in the multi-core system and read the lazy-invalidation state of the PASID state entries. The memory management unit may send PASID state update responses to the devices to synchronize TLB entries prior to activation responsive to the respective lazy-invalidation state.
Abstract:
An embodiment of the present invention is a technique to enhance address translation performance. A register stores capability indicators to indicate capability supported by a circuit in a chipset for address translation of a guest physical address to a host physical address. A plurality of multi-level page tables is used for page walking in the address translation. Each of the page tables has page entries. Each of the page table entries has at least an entry specifier corresponding to the capability indicated by the capability indicators.
Abstract:
In one embodiment of the present invention, a method includes switching between a first address space and a second address space, determining if the second address space exists in a list of address spaces; and maintaining entries of the first address space in a translation buffer after the switching. In such manner, overhead associated with such a context switch may be reduced.