Abstract:
A channel estimation apparatus and method is provided for a wireless communication signal received from at least one relatively mobile wireless transmit/receive unit (WTRU). Predetermined filter coefficients having unique index values are stored in a memory device. An index generator matches estimation values of the mobile unit speed and SNR to a particular filter coefficient, and selects a corresponding index value, whereby the memory performs a look up function according to the index value and outputs a filter coefficient vector. The channel estimation of the wireless communication signal is taken from the output of the filter. Alternatively, a set of parallel filters which run continuously are used to produce several channel estimates, from which the final estimate is selected based on the associated lowest mean square error or highest SNR.
Abstract:
A receiver which includes at least one equalizer filter and a tap coefficients generator for implementing receive diversity. The equalizer filter processes a signal derived from signals received by a plurality of antennas. In one embodiment, sample data streams from the antennas are merged into one sample data stream. The merged sample data stream is processed by a single extended equalizer filter, whereby filter coefficients are adjusted in accordance with a joint error signal. A filter coefficient correction term used by the equalizer filter is generated by the tap coefficients generator using a normalized least mean square (NLMS) algorithm. In another embodiment, a plurality of equalizer filters are utilized, whereby each equalizer receives a sample data stream from a specific one of the antennas. In yet another embodiment, the sample data streams are combined after being processed by a plurality of matched filters based on respective estimated channel impulse responses.
Abstract:
A method and wireless communication system for providing channel assignment information used to support an uplink (UL) channel and a downlink (DL) channel. The system includes at least one Node-B and at least one wireless transmit/receive unit (WTRU). The WTRU communicates with the Node-B via a common control channel, the UL channel and the DL channel. The WTRU receives a message from the Node-B via the common control channel. The message includes an indication of whether the message is intended for assigning radio resources to the UL channel or the DL channel. The WTRU determines whether the message is intended for the WTRU and, if so, the WTRU determines whether the message is for assigning radio resources to the UL channel or the DL channel. The WTRU takes an appropriate action based on whether the message is for assigning radio resources to the UL channel or the DL channel.
Abstract:
An adaptive equalizer including an equalizer filter and a tap coefficients generator used to process a sample data stream derived from a plurality of received signals is disclosed. The tap coefficients generator includes an equalizer tap update unit, a vector norm square estimator, an active taps mask generator, a switch and a pilot amplitude reference unit used to minimize the dynamic range of the equalizer filter. A dynamic mask vector is used to mask active taps generated by the equalizer tap update unit when an unmasked signal output by the equalizer filter is selected by the switch to generate an error signal fed to the equalizer tap update unit. A fixed mask vector is used to mask active taps generated by the equalizer tap update unit when a masked signal output by the equalizer filter is used to generate the error signal.
Abstract:
A system, components and methods provide FEC decoding in a wireless communication system in which signal to noise ratio estimation is used for scaling (18) information captured by a demodulator (14) in processing received wireless communication signals (12). A preferred wireless transmit unit (WRTU) has a channel rate estimation device (23) configured to process the received communication signals for the particular communication channel and to produce channel change rate estimates. A signal to noise ratio (SNR) estimation device (16) of the WRTU is configured to produce SNR estimates based on observation windows of a calculated number of samples of the received signal where the number of samples used for each observation window is calculated (25) as a function of the channel change rate estimates produced by the channel rate estimation device (23).
Abstract:
A method and apparatus generating an error signal (156) and an update vector signal (124) used to generate filter tap coefficients (128) for an equalizer filter (130) residing in an equalizer (100). The equalizer filter (130) outputs an equalized signal (132) in response to receiving a sample data stream (102). The error signal (156) is generated by down-sampling (140) the equalized signal (132), subtracting (144) the equalized signal (132) from a reference signal (146) and filtering (150) and down-sampling (154) the resulting signal. Simultaneously, the update vector signal (124) is generated by converting scalar samples of the sample data stream (102) to a data vector signal (106) and descrambling 116, filtering (118), and down-sampling (122) the data vector signal (106). A tap coefficients generator (126) is used to generate the filter tap coefficients (128) for updating the equalizer filter (130) based on the error signal (156) and the update vector signal (124).
Abstract:
A method of improved performance through channel quality prediction for communications systems employing link adaption techniques includes a receiver which makes selective measurements on downlink transmissions, and then stores one or more of the measurements or a channel quality indicator derived therefrom. The receiver then retrieves one or more of the past measurements (or the past channel quality estimates themselves), and combines it with current measurements (or the current channel quality estimate), to predict what the channel quality will be at some future time and derive a predictive channel quality indicator (CQI). This predictive CQI, derived from both current channel measurements and at least one past channel measurement, is then sent to the transmitter for use in updating transmission parameters.
Abstract:
A method and apparatus for estimating and correcting baseband frequency error in a receiver. In one embodiment, an equalizer performs equalization on a sample data stream and generates filter tap values based on the equalization. An estimated frequency error signal is generated based on at least one of the filter tap values. A rotating phasor is generated based on the estimated frequency error signal. The rotating phasor signal is multiplied with the sample data stream to correct the frequency of the sample data stream. In another embodiment, a channel estimator performs channel estimation and generates Rake receiver finger weights based on at least one of the finger weights. An estimated frequency error signal is generated based on at least one of the finger weights.