Abstract:
A monolithic micro or nano electromechanical transducer device includes a pair of substrates (20, 25) respectively mounting one or more elongate electrical conductors (40) and resilient solid state hinge means (30, 32) integral with and linking the substrates to relatively locate the substrates so that respective elongate electrical conductors (40) of the substrates are opposed at a spacing that permits a detectable quantum tunnelling current between the conductors when a suitable electrical potential difference is applied across the conductors. The solid state hinge means permits relative parallel translation of the substrates transverse to the elongate electrical conductors.
Abstract:
A protective film (20) of an SiO2 thin film is formed on a front surface of an Si substrate (12), and a part of the protective film (20) is removed to form an etching window (22). A sacrifice layer (23) of polycrystalline Si is formed in the etching window (22). A protective film (24) of SiO2 is formed on the front surface of the Si substrate (12) from the top of the sacrifice layer (23), and a thin film (13) as an element formed of polycrystalline Si is further formed on the protective film (24). A backside etching window (26) is opened in a protective film (21) on the back side of the Si substrate (12). The Si substrate (12) is soaked in TMAH to perform crystal anisotropic etching in the Si substrate (12) through the backside etching window (26) to provide a through-hole (14) in the Si substrate (12). When the sacrifice layer (23) is exposed to the interior of the through-hole (14), the sacrifice layer (23) is etching-removed to provide a gap (19) between the protective film (24) and the Si substrate (12) and crystal anisotropic etching of the Si substrate (12) is carried out from its front side and backside.
Abstract:
Techniques, systems, and devices are described for implementing for implementing computation devices and artificial neurons based on nanoelectromechanical (NEMS) systems. In one aspect, a nanoelectromechanical system (NEMS) based computing element includes: a substrate; two electrodes configured as a first beam structure and a second beam structure positioned in close proximity with each other without contact, wherein the first beam structure is fixed to the substrate and the second beam structure is attached to the substrate while being free to bend under electrostatic force. The first beam structure is kept at a constant voltage while the other voltage varies based on an input signal applied to the NEMS based computing element.
Abstract:
A method for making an artificial hair sensor, comprising the steps of: (a) depositing an electrode at each end of a microcapillary having an inside surface; (b) coating a structural fiber with alumina; (c) placing the alumina coated structural fiber inside the microcapillary, wherein part of the alumina coated structural fiber is in a spaced annular relationship with the microcapillary inside surface and part of the fiber extends outside the microcapillary; (d) placing the microcapillary and alumina coated structural fiber inside a heated furnace chamber; and, (e) injecting a vaporized catalyst into the heated furnace chamber. The vaporized catalyst may be a solution of ferrocene in xylene. The microcapillary may be made of glass.
Abstract:
A microelectromechanical vibration sensor includes: a first chamber; a second chamber; a semiconductor membrane between the first chamber and the second chamber; a reference electrode, capacitively coupled to the membrane; and a package structure, which encapsulates and insulates acoustically from the outside world the first chamber, the second chamber, and the membrane.
Abstract:
A physical quantity detection device includes a semiconductor element and a physical quantity detection vibrator element a portion of which overlaps the semiconductor element in a plan view of the semiconductor element. The physical quantity detection vibrator element includes a drive portion including a drive electrode, and a detection portion. At least a partial region of the drive electrode does not overlap the semiconductor element in the plan view of the semiconductor element.
Abstract:
A functional element includes a first electrode section, a second electrode section, a first wiring line connected to the first electrode section, and a second wiring line connected to the second electrode section, the first wiring line is provided with at least one first intersecting section intersecting with a wiring line other than the second wiring line, the second wiring line includes at least one second intersecting section intersecting with a wiring line other than the first wiring line, and a difference between a number of the first intersecting sections and a number of the second intersecting sections satisfies a condition one of equal to and lower than 50% with respect to larger one of the number of the first intersecting sections and the number of the second intersecting sections.
Abstract:
Provided are a micro-electromechanical systems (MEMS) microphone and a method of manufacturing the same. A manufacturing process is simplified compared to a conventional art using both upper and lower substrate processes. Since defects which may occur during manufacturing are reduced due to the simplified manufacturing process, the manufacturing throughput is improved, and since durability of the MEMS microphone is improved, system stability against the external environment is improved.
Abstract:
A physical quantity sensor includes a sensor portion, a casing, and a vibration isolator. The casing includes a supporting portion with a supporting surface that is located to face an end surface of the sensor portion. The vibration isolator is located between the end surface of the sensor portion and the supporting surface of the casing to join the sensor portion to the casing. The vibration isolator reduces a relative vibration between the sensor portion and the casing.