Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consumming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause futher arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
La presente invención se refiere a un procedimiento de fabricación de dispositivos micro-nanof luídicos para el control de flujo como son microválvulas, microbombas y reguladores de caudal, utilizando un polímero fotodefinible y un elastómero como materiales estructurales y a los dispositivos micro-nanofluídicos para el control de flujo obtenidos mediante dicho procedimiento.
Abstract:
Plastic microfluidic structures having a substantially rigid diaphragm that actuates between a relaxed state wherein the diaphragm sits against the surface of a substrate and an actuated state wherein the diaphragm is moved away from the substrate. As will be seen from the following description, the microfluidic structures formed with this diaphragm provide easy to manufacture and robust systems, as well readily made components such as valves and pumps.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
According to the present invention, there is provided a micro-fluidic sensor system (6) including a micro-conduit (56) for carrying fluid therethrough having a flexible wall portion (18), at least one micro-fluidic actuator having a closed cavity, flexible mechanism defining a wall of the cavity (11) and flexible wall portion (18) of the micro-conduit for deflecting upon an application of pressure thereto, and expanding mechanism (14) disposed in the cavity for selectively expanding the cavity and thereby selectively flexing said expanding mechanism, and sensor mechanism in fluid communication with the micro-conduit for sensing the presence or absence of molecules. The present invention further provides for a micro-fluidic system for moving micro-fluid amounts including a micro-conduit and at least one micro-fluidic actuator in fluid communication with the micro-conduit.
Abstract:
The present disclosure describes a Parylene micro check valve (10) including a micromachined silicon valve seat (15) with a roughened top surface to which a membrane cap (20) is anchored by twist-up tethers (25). The micro check valve is found to exhibit low cracking pressure, high reverse pressure, low reverse flow leakage, and negligible membrane-induced flow resistance when used as a valve over a micro orifice through which flow liquid and gas fluids.
Abstract:
A micromachined fluid handling device (600) includes a valve (138) made of reinforced parylene. A heater (440) heats a fluid to expand a thermopneumatic fluid (442). The heater (440) is formed on unsupported silicon nitride to provide a reduction in power.