Abstract:
The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certaom devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
Abstract:
A microfluidic device comprises a matrix of rotary flow reactors. The microfluidic matrix device offers a solution to the "world-to-chip" interface problem by accomplishing two important goals simultaneously: an economy of scale in reagent consumption is achieved, while simultaneously minimizing pipetting steps. N2 independent assays can be performed with only 2N+1 pipetting steps, using a single aliquot of enzyme amortized over all reactors. The chip reduces labor relative to conventional fluid handling techniques by using an order of magnitude less pipetting steps, and reduces cost by consuming two to three orders of magnitude less reagents per reaction. A PCR format has immediate applications in medical diagnosis and gene testing. Beyond PCR, the microfluidic matrix chip provides a universal and flexible platform for biological and chemical assays requiring parsimonious use of precious reagents and highly automated processing.
Abstract:
A chemostat (Figure 1) that includes a growth chamber having a plurality of compartments, where each of the compartments may be fluidly isolated from the rest of the growth chamber by one or more actuatable valves. The chemostat may also include a nutrient supply-line to supply growth medium to the growth chamber (s), and an output port to remove fluids from the growth chamber. Also, presented is a method to prevent biofilm formation in a growth chamber of the chemostat. The method may include the step of adding a lytic agent to an isolated portion of the growth chamber and re-uniting the isolated portion with the rest of the growth chamber.
Abstract:
The present invention relates to microfluidic devices and methods facilitating the growth and analysis of crystallized materials such as proteins. In accordance with one embodiment, a crystal growth architecture is separated by a permeable membrane from an adjacent well having a much larger volume. The well may be configured to contain a fluid having an identity and concentration similar to the solvent and crystallizing agent employed in crystal growth, with diffusion across the membrane stabilizing that process. Alternatively, the well may be configured to contain a fluid having an identity calculated to affect the crystallization process. In accordance with the still other embodiment, the well may be configured to contain a material such as a cryo-protectant, which is useful in protecting the crystalline material once formed.
Abstract:
The present invention relates to microfluidic devices and methods facilitating the growth and analysis of crystallized materials such as proteins. In accordance with one embodiment, a crystal growth architecture is separated by a permeable membrane from an adjacent well having a much larger volume. The well may be configured to contain a fluid having an identity and concentration similar to the solvent and crystallizing agent employed in crystal growth, with diffusion across the membrane stabilizing that process. Alternatively, the well may be configured to contain a fluid having an identity calculated to affect the crystallization process. In accordance with the still other embodiment, the well may be configured to contain a material such as a cryo-protectant, which is useful in protecting the crystalline material once formed.
Abstract:
A microfluidic device comprises a matrix of rotary flow reactors. The microfluidic matrix device offers a solution to the "world-to-chip" interface problem by accomplishing two important goals simultaneously: an economy of scale in reagent consumption is achieved, while simultaneously minimizing pipetting steps. N2 independent assays can be performed with only 2N+1 pipetting steps, using a single aliquot of enzyme amortized over all reactors. The chip reduces labor relative to conventional fluid handling techniques by using an order of magnitude less pipetting steps, and reduces cost by consuming two to three orders of magnitude less reagents per reaction. A PCR format has immediate applications in medical diagnosis and gene testing. Beyond PCR, the microfluidic matrix chip provides a universal and flexible platform for biological and chemical assays requiring parsimonious use of precious reagents and highly automated processing.
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers (9102a, 9102b) of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers (9102a, 9102b), thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers (9102a, 9102b) of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers (9102a, 9102b), thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.