Abstract:
Method and apparatus for obtaining an enhanced clearer measurement signal with improved fringe contrast from a laser interferometer. The interferometer sends a laser beam (12) through atmospheric air to a polarizing or nonpolarizing beamsplitter (13) that sends one laser beam portion (14,16) to a fixed reference retroreflector (15) and another portion (19,21) to a movable measurement retroreflector (20). Both beams, upon retroreflection go back to the beamsplitter and are recombined to produce a combined beam (22) that is then sent to an aperture (30) such that only a small selected portion of that combined beam passes through the aperture, attenuating the energy of the combined beam but increasing its fringe contrast. This portion is sent to a detector (32) and is subsequently amplified by a high-gain amplifier.
Abstract:
According to the present disclosure, there is provided a device (2) and a method for measuring a wavelength for a laser device. The device (2) for measuring a wavelength for a laser device includes: a first optical path assembly and a second optical path assembly. The first optical path assembly and the second optical path assembly constitute a laser wavelength measurement optical path. The second optical path assembly includes: an FP etalon assembly (11) and an optical classifier (13). The homogenized laser beam passes through the FP etalon assembly (11) to generate an interference fringe. The optical classifier (13) is arranged after the FP etalon assembly (11) in the laser wavelength measurement optical path, and configured to deflect the laser beam passing through the FP etalon assembly (11). The FP etalon assembly (11) allows two FP etalons (FP1, FP2) to share the same optical path for an interference imaging, and therefore a compact structure having a small volume, a simple design, and a high stability are achieved. In cooperation with the optical classifier (13), a precise measurement for a laser wavelength may be achieved, and at the same time a wavelength measurement range is large. It is suitable for an online measurement for a laser wavelength and a corresponding closed-loop control feedback.
Abstract:
The measurement accuracy of an apparatus for measuring the surface shape of an object utilizing a two-wavelength phase-shift interferometry is improved. A low-coherence light source, a plurality of wavelength filters with different transmission wavelengths, an angle control unit and an analysis unit are provided. When performing a two-wavelength phase shift method, the analysis unit detects the wavelength difference between two wavelengths, and corrects a calculated wavelength value and a calculated phase value of one of the wavelengths for preventing a fringe-order calculation error. Next, the angle of the wavelength filters is controlled for making the actual wavelength difference coincident with a designed value. Thus, the wavelength difference between the two wavelengths is continuously controlled to be constant, which enables measurements of surface shapes with high accuracy, even when there are wavelength fluctuations due to the temperature change or the time elapse.
Abstract:
An evaluation method of evaluating an optical characteristic of an optical system to be evaluated using an interferometer, comprises a first acquisition step of acquiring a first interference fringe formed by the interferometer when a location of a movable element of the interferometer in an optical axis direction of the optical system is a first location, a second acquisition step of acquiring a second interference fringe formed by the interferometer when the location of the movable element in the optical axis direction is a second location different from the first location, a determination step of determining a pupil-center coordinate of the optical system based on the acquired first interference fringe and the acquired second interference fringe, and a computation step of computing the optical characteristic of the optical system using the pupil-center coordinate determined in the determination step.
Abstract:
An interferometer system is disclosed which is configured to combine measurement light with reference light to form an optical interference pattern, where the interferometer system includes a modulator configured to repetitively introduce a sequence of phase shifts between the measurement and reference light; and a camera system positioned to measure the optical interference pattern, where the camera system is configured to separately accumulate time-integrated images of the optical interference pattern corresponding to the different phase shifts in the sequence during the repetitions of the sequence.
Abstract:
An optical measuring apparatus for comprising, in combination, a polarization type interferometer including a polarization type beam splitter in which a polarized beam of light is split into orthogonally polarized reference and test beams, an array of detectors arranged in a line for creating a plurality of phase shifting interferograms, and a scanning device for moving the object in a direction perpendicular to a long axis of the detectors.
Abstract:
A method and system for controlling the wavelength of light emitted by a tunable laser. The system includes a wavelength tuner that provides information of a desired wavelength; a coupler for tapping a portion of the light from the tunable laser; and an apparatus for measuring the actual wavelength of the light. The apparatus takes the portion of the light as an input signal and splits the input signal into two beams that are directed through two paths of different optical lengths. Then, the two beams are interfered with each other in order to form a fringe pattern at an observation plane, where the fringe pattern is detected and analyzed to determine the wavelength of the light. A processor compares the difference between the desired and determined wavelengths, and sends a tuning signal to the tunable laser forming a feedback control of the tunable laser.
Abstract:
Electro-optical apparatus measures the average relative phase of an incident wave fringe pattern. The subject fringe, e.g., an interferometric pattern, passes through three sections of an optical mask, one characterized by fixed transmissivity and the other two by quadrature-displaced spatial fringe patterns. The light passing through each section is separately collected and detected to average the respective incident wave/mask section interactions. The phase of the incident fringe pattern relative to the mask is then determined by arithmetically processing the detected signals.In accordance with one aspect of the present invention, the subject fringe pattern is time modulated and the quadrature-shifted mask signals A-C coupled to obviate the requirement for the third, fixed transmissivity mask section.
Abstract:
A real-time diffraction interferometer for analyzing an optical beam comprises converging means (13) for bringing the beam to a focus at focal point (14), and an apertured grating structure (20) positionable adjacent the focal point (14). The apertured grating structure (20) comprises a transparent substrate (10'), an obverse surface of which is coated with a translucent coating (11) except for a pinhole-sized spot (12) that is left uncoated so as to function as an aperture in the coating (11). A reverse surface of the substrate (10') has a lenticulate surface configuration, which functions as a diffraction grating. The beam incident upon the apertured grating structure (20) is separated into a major portion, which is transmitted with attenuated intensity through the translucent coating (11), and a minor portion, which is transmitted with undiminished intensity through the pinhole aperture (12). The major portion of the beam is diffracted into spatially separated diffraction components, and the minor portion of the beam is diffracted by the pinhole aperture (12) so as to acquire a spherical wavefront. Interference patterns produced by interference of the spherical wavefront with each of the wavefronts of the zeroth order and the positive and negative first-order diffraction components of the intensity-attenuated beam transmitted by the coating (11) are separately imaged on conventional solid-state photodetectors (21, 22 and 23).
Abstract:
Various uses of visible light interference patterns are provided. Suitable interference patterns are those formed by diffraction from patterns of apertures. Typical uses disclosed herein relate to spatial metrology, such as a translational and/or angular position determination system. Further uses include the analysis of properties of the light itself (such as the determination of the wavelength of the electromagnetic radiation). Still further uses include the analysis of one or more properties (e.g. refractive index) of the matter through which the light passes. Part of the interference pattern is captured at a pixellated detector, such as a CCD chip, and the captured pattern compared with a calculated pattern. Very precise measurements of the spacing between maxima is possible, thus allowing very precise measurements of position of the detector in the interference pattern.