Abstract:
본 발명은 임의의 시료에 대한 뮬러 행렬 성분들 중에서 전부 또는 일부를 종래의 이중-광소자-회전형 뮬러-행렬 타원계측기들의 광원의 잔류 편광 및 광검출기의 편광 의존성과 고차항의 푸리에 계수들의 측정값 때문에 생기는 측정 정확도 및 측정 정밀도의 문제점을 해결하기 위한 광소자-회전형 뮬러-행렬 타원계측기를 제공하고자 하는 것이다.
Abstract:
A detector (2) for detecting photoluminescence from a sample (104), the detector (28) comprising an array of photo-sensitive detectors configured to receive photoluminescence, at least one photo-sensitive detector being provided with a first type of linear polarization filter (40) and at least one photo-sensitive detector being provided with a second type of linear polarization filter(40), wherein said first type of linear polarization filter has a plane of polarization which is at angled with respect to a plane of polarization of said second type of polarization filter.
Abstract:
In a system for analyzing optical properties of an object (350) a point source of light (100) composed of multiple spectral bands each having a respective amplitude, phase and polarization is converted by first optics (120, 150) into a line light source to illuminate an object line on the object. A beam splitter (200) splits the light exiting the first optics and directs a first portion of light on to the object (350) as an illuminated line and a second portion of the light on to a reference mirror (450). Second optics (500) collects respective first and second lines of light reflected by the object and mirror of and collinearly images the reflected lines of light as an image line on to an imaging spectrometer (550) wherein mutual interference allows determination of the optical properties of the object at each point along the object line.
Abstract:
An apparatus for obtaining information regarding a biological structure(s) can include, for example a light guiding arrangement which can include a fiber through which an electromagnetic radiation(s) can be propagated, where the electromagnetic radiation can be provided to or from the structure. An at least partially reflective arrangement can have multiple surfaces, where the reflecting arrangement can be situated with respect to the optical arrangement such that the surfaces thereof each can receive a(s) beam of the electromagnetic radiations instantaneously, and a receiving arrangement(s) which can be configured to receive the reflected radiation from the surfaces which include speckle patterns.
Abstract:
Provided are a dual coupler device configured to receive lights of different polarization components, a spectrometer including the dual coupler device, and a non-invasive biometric sensor including the spectrometer. The dual coupler device may include, for example, a first coupler layer configured to receive a light of a first polarization component among incident lights. and a second coupler layer configured to receive a light of a second polarization component among the incident lights, wherein a polarization direction of the light of the first polarization component is perpendicular to a polarization direction of the light of the second polarization component. The first coupler layer and the second coupler layer may be spaced apart from each other and extended along a direction in which the light propagates in the first coupler layer and the second coupler layer.
Abstract:
The present disclosure concerns a remote connection system capable of being incorporated into an aircraft (1A, 1B, 1C) comprising at least one motor propeller (50A, 50B, 50C) having a plurality of blades (52A, 52B, 52C) capable of rotating relative to a fixed module (10A, 10B, 10C) of the aircraft about an drive shaft (X). The system comprises: an optical transmission device configured such that, when the system is incorporated into the aircraft (1A, 1B, 1C), it transmits a light beam that emerges out of the propeller (50A, 50B, 50C), from at least one transmitting surface (54A, 54B, 54C) of said propeller (50A, 50B, 50C); and an optical device for detecting the light beam, comprising at least one detecting surface (14A, 14B, 14C) that is sensitive to the light beam, and that is capable of being incorporated into the fixed module (10A, 10B, 10C) in such a way that said at least one transmitting surface (54A, 54B, 54C) and said at least one detecting surface (14A, 14B, 14C) repeatedly come to face each other, at a distance from each other, when the propeller (50A, 50B, 50C) rotates relative to the fixed module (10A, 10B, 10C). The present disclosure also concerns an assembly comprising the propeller, the fixed module and the connection system.
Abstract:
Polarization selective surface enhanced Raman spectroscopy (SERS) includes a plurality of nanofingers arranged as a SERS multimer to exhibit a polarization-dependent plasmonic mode and one or both of a stimulus source and a Raman detector. The stimulus source is to illuminate the SERS multimer with a stimulus signal and the Raman detector is to detect a Raman scattering signal emitted by an analyte in a vicinity of the SERS multimer. One or both of the Raman scattering signal has a polarization state dictated by or associated with the polarization-dependent plasmonic mode and the stimulus signal has a polarization state corresponding to the polarization-dependent plasmonic mode.
Abstract:
Methods and apparatus for concentration determination using polarized light. The apparatus includes a first polarized light source having a first light source polarization axis and a second polarized light source having a second light source polarization axis generally perpendicular to the first light source polarization axis. Also, a first polarized light receiver having a first polarized light receiver polarization axis and configured to measure an intensity of light transmitted from the first light receiver polarizer and a second polarized light receiver having a second polarized light receiver polarization axis substantially perpendicular to the first light receiver polarization axis and configured to measure an intensity of light transmitted from the second light receiver polarizer, wherein the first and second light receiver polarization axes are generally +/−45 degrees relative to the first and second light source polarization axes.