Abstract:
An AFM(Atomic Force Microscope) cantilever probe and a method for manufacturing the same are provided to facilitate setting of thickness of the cantilever with the microscopic probe and obtain desired natural resonance frequency of the cantilever. An AFM(Atomic Force Microscope) cantilever probe(200) comprises a handling part(240), a cantilever part(230), a probe part(210), and a probe(220). The handling part is made of a semiconductor substrate. The cantilever is elongated in bar-shape on the bottom of the handling part. The probe part, elongating on one side of the cantilever part, is shaped in vertically projected peak. The probe, provided on the peak of the probe part, makes contact with a surface of an analyzing object.
Abstract:
A probe of an AFM(Atomic Force Microscope) cantilever using a ferroelectric is provided to precisely measure the electric polarization of the ferroelectric by using the ferroelectric in the probe of the cantilever. A probe of an AFM(Atomic Force Microscope) cantilever using a ferroelectric includes a cantilever support(100), an insulation layer(110), a metal layer(120), and a ferroelectric(130). The insulation layer is formed on the cantilever support. The metal layer is formed on the insulation layer. The ferroelectric is formed at the tip head of the metal layer. The ferroelectric has a domain of 180 degrees. The ferroelectric uses a PZT.
Abstract:
본 발명은 단결정 기판과, 상기 단결정 기판 위에 증착되어 하부 전극으로 작용하며 고온 초전도 특성을 가지는 전도성 산화물 박막과, 상기 전도성 산화물 박막 위에 증착되는 강유전체 박막을 포함하는 초전도 전극을 이용한 나노스토리지 강유전체 매체구조에 관한 것이다. 본 발명에 따르면 나노스토리지 강유전체 매체구조에서 요구되는 특성인 표면 거칠기가 나노미터 정도일 것과 결정학적 정렬성이 우수할 것과 강유전체 도메인의 표면 전위가 충분히 클 것과 같은 조건을 만족하는 매체구조를 실현할 수 있다. 강유전체 박막, 고온 초전도 특성, 나노스토리지, 전도성 산화물, 전극
Abstract:
PURPOSE: A method for forming a channel of a cantilever for an atomic force microscope having an FET is provided to reduce a width of a channel of the cantilever without using an electric beam lithography process. CONSTITUTION: A method for forming a channel of a cantilever for an atomic force microscope having an FET includes forming a probe at a front end of the cantilever upwardly extending from a supporting part. A channel is formed at a lower region of the probe of the cantilever. At least two insulation layers(120) are stacked on an upper surface of a silicon layer(110) in which first conductive impurities are doped. The channel is formed at the silicon layer(110). The two insulation layers(120) are formed by using mutually different materials.
Abstract:
Disclosed is a manufacturing method of an OLED substrate. A manufacturing method of an OLED substrate, according to an embodiment of the present invention comprises: a first step of forming a plurality of nanostructures separated at fixed intervals to expose part of the surface of the substrate by using a chemical bath deposition (CBD) method on one surface or both surfaces of the substrate; and a second step of etching the exposed part of the substrate and forming an uneven structure on the surface of the substrate.
Abstract:
A silica glass film formation method for passivating surface using polysilazane is provided to have no deformity by impurity when cured in a room temperature and to form glass film having high density. A glass film formation method for passivating surface comprises steps of: coating polysilazane on a substrate; and curing the polysilazane by using atmospheric pressure plasma process. A process time of the curing step is 10-20 minutes. A processing temperature of the curing step is 50~120°C. A process gas of the atmospheric pressure plasma process is argon gas and oxygen gas.
Abstract:
A structure having a glass protection layer formed on the surface thereof is provided to protect the surface of the structure from scratches, wear, finger printing, dust, etc. while maintaining color or gloss of the substrate, to reduce the entire coating process time, and to allow the glass protection layer to exhibit best physical properties even at room temperature. In a structure having a glass protection layer(240) in which a matrix(210) and a silver coating layer(220) are sequentially formed, a structure having a glass protection layer formed on the surface thereof comprises the glass protection layer formed on the silver coating layer using polysilazane. The structure having a glass protection layer formed on the surface thereof further comprises a coloring layer(230) formed between the silver coating layer and glass protection layer to display gloss and color of the structure. The formation of the glass protection layer is performed using atmospheric pressure plasma hardening, pressurized wet hardening, or seam hardening. The sliver coating layer and glass protection layer are formed by spray coating, dip coating, or spin coating. The glass protection layer is coated to a thickness of 0.1 to 5 mum.