Abstract:
A metrology system can be integrated within a lithographic apparatus to provide integrated metrology within the lithographic process. However, this integration can result in a throughput or productivity impact of the whole lithographic apparatus which can be difficult to predict. It is therefore proposed to acquire throughput information associated with a throughput of a plurality of substrates within a lithographic apparatus, the throughput information including a throughput parameter, and predict, using a throughput simulator, a throughput using the throughput parameter as an input parameter. The throughput simulator may be calibrated using the acquired throughput information. The impact of at least one change of a throughput parameter on the throughput of the lithographic apparatus may be predicted using the throughput simulator.
Abstract:
A method including determining a type of structural asymmetry of the target from measured values of the target, and performing a simulation of optical measurement of the target to determine a value of an asymmetry parameter associated with the asymmetry type. A method including performing a simulation of optical measurement of a target to determine a value of an asymmetry parameter associated with a type of structural asymmetry of the target determined from measured values of the target, and analyzing a sensitivity of the asymmetry parameter to change in a target formation parameter associated with the target. A method including determining a structural asymmetry parameter of a target using a measured parameter of radiation diffracted by the target, and determining a property of a measurement beam of the target based on the structural asymmetry parameter that is least sensitive to change in a target formation parameter associated with the target.
Abstract:
A method including evaluating a plurality of substrate measurement recipes for measurement of a metrology target processed using a patterning process, against stack sensitivity and overlay sensitivity, and selecting one or more substrate measurement recipes from the plurality of substrate measurement recipes that have a value of the stack sensitivity that meets or crosses a threshold and that have a value of the overlay sensitivity within a certain finite range from a maximum or minimum value of the overlay sensitivity.
Abstract:
A method including: for a metrology target, having a first biased target structure and a second differently biased target structure, created using a patterning process, obtaining metrology data including signal data for the first target structure versus signal data for the second target structure, the metrology data being obtained for a plurality of different metrology recipes and each metrology recipe specifying a different parameter of measurement; determining a statistic, fitted curve or fitted function through the metrology data for the plurality of different metrology recipes as a reference; and identifying at least two different metrology recipes that have a variation of the collective metrology data of the at least two different metrology recipes from a parameter of the reference that crosses or meets a certain threshold.
Abstract:
A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
Abstract:
A method including: obtaining a measurement of a metrology target on a substrate processed using a patterning process, the measurement having been obtained using measurement radiation; and deriving a parameter of interest of the patterning process from the measurement, wherein the parameter of interest is corrected by a stack difference parameter, the stack difference parameter representing an un-designed difference in physical configuration between adjacent periodic structures of the target or between the metrology target and another adjacent target on the substrate.
Abstract:
A method and apparatus for obtaining focus information relating to a lithographic process. The method includes illuminating a target, the target having alternating first and second structures, wherein the form of the second structures is focus dependent, while the form of the first structures does not have the same focus dependence as that of the second structures, and detecting radiation redirected by the target to obtain for that target an asymmetry measurement representing an overall asymmetry of the target, wherein the asymmetry measurement is indicative of focus of the beam forming the target. An associated mask for forming such a target, and a substrate having such a target.
Abstract:
A method including obtaining a fit of data for overlay of a metrology target for a patterning process as a function of a stack difference parameter of the metrology target; and using, by a hardware computer, a slope of the fit (i) to differentiate a metrology target measurement recipe from another metrology target measurement recipe, or (ii) calculate a corrected value of overlay, or (iii) to indicate that an overlay measurement value obtained using the metrology target should be used, or not be used, to configure or modify an aspect of the patterning process, or (iv) any combination selected from (i)-(iii).
Abstract:
Metrology targets are formed by a lithographic process, each target comprising a bottom grating and a top grating. Overlay performance of the lithographic process can be measured by illuminating each target with radiation and observing asymmetry in diffracted radiation. Parameters of metrology recipe and target design are selected so as to maximize accuracy of measurement of overlay, rather than reproducibility. The method includes calculating at least one of a relative amplitude and a relative phase between (i) a first radiation component representing radiation diffracted by the top grating and (ii) a second radiation component representing radiation diffracted by the bottom grating after traveling through the top grating and intervening layers. The top grating design may be modified to bring the relative amplitude close to unity. The wavelength of illuminating radiation in the metrology recipe can be adjusted to bring the relative phase close to π/2 or 3π/2.