Abstract:
The invention provides compositions and methods for treating or imaging stenosis, stenotic lesions, occluded lumens, embolic phenomena or thrombotic disorders. The invention further provides compositions and methods for treating internal hemorrhage.
Abstract:
The present invention is directed, in certain embodiments, to improved, small scale systems and methods able to selectively treat parts of a single cell, including, in certain embodiments, portions of a main body portion of a single cell, and able, in certain embodiments, to establish long-term gradients of active substances within subcellular regions of a single cell. The present invention provides, in some embodiments, techniques for selectively contacting a portion of the surface of a biological cell with a fluid or fluid component carrying a particular potential for a biophysical or biochemical interaction with the cell, and simultaneously contacting a different portion of the surface of the cell with another fluid or fluid component having a different potential for the biophysical or biochemical interaction with the cell.
Abstract:
Systems and methods for improved flow properties in fluidic and microfluidic systems are disclosed. The system includes a microfluidic device having a first microchannel, a fluid reservoir having a working fluid and a pressurized gas, a pump in communication with the fluid reservoir to maintain a desired pressure of the pressurized gas, and a fluid-resistance element located within a fluid path between the fluid reservoir and the first microchannel. The fluid-resistance element includes a first fluidic resistance that is substantially larger than a second fluidic resistance associated with the first microchannel.
Abstract:
A microscopy system for monitoring of one or more specimens includes a plurality of microscope blades, each microscope blade having at least one objective, at least one illuminator, and at least one detector. The microscopy system also includes a plurality of carriages, each carriage being connected to one or more of the microscope blades, and one or more actuators configured to drive the plurality of carriages along one or more axes, at least some of the plurality of carriages having at least partially overlapping ranges of motion along at least one of the one or more axes. The microscopy system also includes a master controller configured to drive each of the carriages, using the actuator(s), along the one or more axes.
Abstract:
A bio-inspired window can be created by applying one or more heat exchange layers to one or more surfaces of a window of a building, boat, vehicle or any other structure. The heat exchange layer can include an interconnected network or array of channels or microchannels that can be used to flow a fluid over the surface of the window. The fluid can be used to heat or cool the surface of the window panel to control the flow of heat across the window and reduce the heating or cooling energy load of building. The fluid can be heated or cooled using the ambient air in the building. The refractive index of the fluid can be adjusted to change of optical transparency properties of the window. In some embodiments, the window can appear nearly as clear as an ordinary panel of glass. In other embodiments, the window can color, block or scatter the incoming light.
Abstract:
An organ-on-chip device for monitoring a biological function and including a membrane layer located at an interface region between a top microchannel and the a microchannel. The membrane includes a first type of cells forming a barrier between the top microchannel and the bottom microchannel. The device further includes a top layer having a first plurality of transendothelial electrical resistance (TEER) measurement electrodes for enabling direct monitoring of cell function and electrical activity of the first type of cells on the membrane. The device also has a multi-electrode array (MEA) layer with a second plurality of TEER measurement electrodes for enabling direct monitoring of cell function and electrical activity of a second type of cells on the MEA layer.
Abstract:
Embodiments of various aspects described herein are directed to assays and devices for detecting a target molecule in a sample. In particular, there is described a lateral assay comprising a plurality of serially oriented capture zones, where each capture zone independently comprises an immobilized competitive molecule on a lateral flow matrix. The immobilized competitive molecule and the analyte competitively bind with a capture agent capable of binding the analyte.
Abstract:
A microfluidic device for determining a response of cells comprises a microchannel and a seeding channel. The microchannel is at least partially defined by a porous membrane having cells adhered thereto. The microchannel has a first cross-sectional area. The seeding channel delivers a working fluid to the cells within the microchannel. The seeding channel has a second cross-sectional area that is less than the first cross-sectional area such that a flow of the working fluid produces a substantially higher shear force within the seeding channel to inhibit the attachment of cells within the seeding channel. And when multiple seeding channels are used to deliver fluids to multiple microchannels that define an active cellular layer across the membrane, the seeding channels are spatially offset from each other such that fluid communication between the fluids occurs only at the active region via the membrane, not at the seeding channels.
Abstract:
Provided herein relates to systems and methods for producing and using a body having a central channel separated by one or more membranes. The membrane(s) are configured to divide the central channel into at least one mesochannel and at least one microchannel. The height of the mesochannel is substantially greater than the height of the microchannel. A gaseous fluid can be applied through the mesochannel while a liquid fluid flowing through the microchannel. The systems and methods described herein can be used for various applications, including, e.g., growth and differentiation of primary cells such as human lung cells, as well as any other cells requiring low shear and/also stratified structures, or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents and/or vaccines). The systems and methods can also permit co-culture with one or more different cell types.