Abstract:
A multi-layer circuit board includes a first circuit board, conducting blocks, a second circuit board, and conducting recesses. The first circuit board has a first conductor layer mounted on the first circuit board. The conducting blocks are mounted on the first circuit board and electrically connected to the first conductor layer. The second circuit board has a second conductor layer mounted thereon and facing the first circuit board. The conducting recesses are formed in the second circuit board, electrically connected to the second conductor layer, and corresponding to the respective conducting blocks. The insulating layer is mounted between the first conductor layer and the second conductor layer. The second circuit board is on the first circuit board, the conducting blocks are respectively mounted in the conducting recesses to electrically connect the first conductor layer and the second conductor layer.
Abstract:
An EMI shielding device is provided. A first shielding layer is formed on a first surface of a first substrate, and a first through hole is formed through the first substrate. A second substrate is mounted in an opening of the first through hole, and a second shielding layer is formed on a surface of the second substrate. A conductive paste is mounted between the first substrate and the at least one second substrate to electrically connected the first shielding layer and the second shielding layer. A protective layer, an antirust layer, and a shielding layer are sequentially mounted on the conductive paste. The EMI shielding device is mounted on a printed circuit board (PCB) by Surface Mount Technology. Therefore, the EMI shielding device may be firmly mounted on the PCB, and there is not any narrow gap that may leak electromagnetic radiation.
Abstract:
A multi-layer circuit board includes a first circuit board, multiple conducting blocks, a second circuit board, and multiple conducting recesses. The first circuit board has a first conductor layer formed thereon. The conducting blocks are mounted on the first circuit board and electrically connected to the first conductor layer. The second circuit board has a second conductor layer mounted thereon and facing the first circuit board. The conducting recesses are formed in the surface of the second circuit board. Each conducting recess has a conducting layer electrically connected to the second conductor layer. When the conducting blocks are mounted in the conducting recesses, the first conductor layer and the second conductor layer are electrically connected through the conducting blocks and the conducting recesses. As can be separated from the first circuit board for test of the two conductor layers, the yield of the second circuit board is enhanced.
Abstract:
A buildup board structure incorporating magnetic induction coils and flexible boards is disclosed. The buildup board structure includes at least one first, second and third buildup bodies modular and stackable. Any two adjacent buildup bodies are separated by a covering layer provided with a central hole for electrical insulation. All central holes are aligned. Each buildup body includes a plurality of flexible boards, and each flexible board is embedded with a plurality of magnetic induction coils surrounding the corresponding central hole and connected through connection pads. The first, second and third buildup bodies are easily laminated in any order by any number as desired such that the effect of magnetic induction provided by the magnetic induction coils embedded in the buildup board structure are addable to greatly enhance the overall effect of magnetic induction.
Abstract:
A winged coil structure and a method of manufacturing the same are disclosed. The winged coil structure includes an upper flexible plate, at least one upper magnetic induction coil, at least one upper connection pad, a lower flexible plate, at least one lower magnetic induction coil, at least one lower connection pad, at least one gold finger, a dielectric layer and at least one connection plug. The connection plug connects the upper connection pad and the lower connection pad through thermal pressing such that the gold finger, the upper magnetic induction coil, the upper connection pad, the lower connection pad, the connection plug, the lower connection pad and the lower magnetic induction coil are electrically connected. The upper flexible plate is provided with notched lines to be easily bent without damage to the upper and lower magnetic induction coils. Thus, a bendable feature for magnetic induction coils is provided.
Abstract:
A method for manufacturing a circuit board with a buried element having high density pin count, wherein a micro copper window formed in a first circuit by patterned dry film electroplating is easily controlled less than 50 μm so that the micro conduction holes formed after the laser drilling each has a diameter greatly shrunk less than 50 μm so as to highly increase density of the micro conduction holes, thereby facilitating in burial of the buried element with the high density pin count. Additionally, by disposing the micro conduction holes in the same elevation, optically aligning a fixing position for the buried element can be controlled precisely.
Abstract:
A compound carrier board structure of Flip-Chip Chip-Scale Package and manufacturing method thereof provides a baseplate having a flip region with a through-opening and bonding to a Non-conductive Film to bond to a carrier board in order to form a compound carrier board structure. The baseplate is constructed with a low Thermal Expansion Coefficient material.
Abstract:
A stacked multilayer structure, including a first circuit layer having bumps, a plastic film stacked on the first circuit layer to fill up the space among the bumps so as to form a co-plane, and a second circuit layer formed on the co-plane and connected to the first circuit layer. The plastic film includes a glass fiber layer which is embedded and not exposed.
Abstract:
Disclosed is a method of packaging a chip and a substrate, including the steps of forming a substrate with a thickness ranging from 70 to 150 μm, which comprises a dielectric layer, a circuit metal layer stacked on the dielectric layer and bonding pads higher than the dielectric layer by 10 to 15 μm; forming a stabilizing structure around the substrate to provide a receiving space; disposing the chip on the receiving space and bonding the pins of the chip with the bonding pads; and filling up the receiving space under the chip with a filling material to a total thickness ranging from 300 to 850 μm. Without the plastic molding process, the present invention reduces the cost and the total thickness, and further prevents the substrate from warping by use of the stabilizing fixing structure.