Abstract:
Electroless copper deposition solutions, and method of electrolessly depositing copper onto a workpiece using these solutions, are disclosed. The solutions contain, in addition to water as the usual solvent, a soluble source of copper ions, a complexing agent or mixture of agents to maintain the copper in solution, and a copper reducing agent effective to reduce the copper ions to metallic copper as a deposit or plating on a prepared surface of a workpiece brought into contact with the solution. The invention comprehends replacing the usual formaldehyde-type reducing agents of commercial electroless copper baths with non-formaldehyde-type agents, specifically hypophosphites, by coordinating the particular complexing agents employed and the bath pH, to effect reduction of cupric ions to a metallic copper plating on a prepared surface of a substrate, wherein the resulting electroless metal deposit has conductive properties at least satisfactory for build-up of additional thickness of metal by standard electroplating techniques. Improvement over the prior formaldehyde-reduced electroless copper solutions is obtained in that the invention teaches those skilled in the art how to achieve satisfactory copper deposition over longer periods of bath operation than has been practical heretofore. Fluctuations in component concentration and bath temperatures are inherent and unavoidable in the course of commercial use of the bath and these are normally detrimental to protracted use of formaldehyde-reduced copper solutions. In the present invention, bath stability is maintained better, in spite of these inherent fluctuations.
Abstract:
Adhesion of metal conductor layer is insulating thermplastic or thermosetting resin, pref. epoxy or phenolic resin, substrate is improved by dissolving outer metal film, pref. Cu or Ni of composite stratified panel with a chemically attacking soln. catalytically activating non-conducting surface obtained, pref. in one step with an Sn-Pd hydrosol, metal plating printed circuit zones to be rendered conductive and heating panel, at least once after catalysis, to less than substrate decomposition temp. pref. 30-105 degrees C.
Abstract:
Photoresist image layers, particularly those used for high resolution geometries in microelectronic applications, are stabilized against distortion or degradation by the heat generated during subsequent etching, ion implantation processes and the like, by the application of a film of a thermally stabilizing agent prior to postdevelopment bake of the image layer. The process serves to achieve thermal stabilization of the photoresist image layer without significantly affecting the ease of subsequent stripping of the layer. It is particularly effective when used to thermally stabilize positive resist images derived from photoresist systems based on novolak resins.
Abstract:
In a mechanical plating process, oxidation-prone metals, such as aluminum, titanium, magnesium, and mixtures thereof, can be applied to metal substrates without the corrosion problems encountered in the prior art. To avoid such problems, the substrate is plated with the oxidation-prone metal and relatively minor amounts of an immersion metal and, optionally, a protective metal. The immersion metal which can be salts or oxides of metals selected from the group consisting of tin, copper, nickel, cadmium, zinc, lead, and mixtures thereof coats the oxidation-prone metal in forming a mechanical plating coating and prevents formation of an oxide layer on the oxidation-prone metal. The protective metal which may be selected from the group consisting of zinc, cadmium, and mixtures thereof prevents oxidation of the plated metal substrate when exposed to the environment. An etching agent is used either prior to and/or during mechanical plating.
Abstract:
A method of electroless deposition of metal on a non-conductive substrate is disclosed and comprises treating a substrate prior to electroless deposition with a catalyst composition containing a mixed tin-palladium catalyst. An improvement in metal deposition is obtained by contacting the treated substrate with an accelerator bath containing an agent which oxidizes the tin.