Abstract:
A circuit board (200, 300, 400) design is disclosed that is useful in high speed differential signal applications uses either a via arrangement or a circuit trace exit structure. In the via arrangement, sets of differential signal pair vias (301, 303, 401, 402) and an associated ground (302) are arranged adjacent to each other in a repeating pattern. The differential signal vias (301, 303, 591) of each pair are spaced closer to their associated ground via (302a, 593a) than the spacing between the adjacent differential signal pair associated ground (302b, 593b) so that differential signal vias exhibit a preference for electrically coupling to their associated ground vias. The circuit trace exit structure involves the exit portions of the circuit traces (420, 550) of the differential signal vias (401, 402, 591) to follow a path where the traces then meet with and join to the transmission line portions (552) of the conductive traces.
Abstract:
A light emitting device includes a mounting board, a first light emitting element and a second light emitting element. The mounting board includes an insulator which includes a front face and a back face, a pair of front face wiring parts disposed on the front face of the insulator, a connection wiring part disposed on the front face of the insulator and spaced apart from the front face wiring parts, a pair of back face terminals disposed on the back face of the insulator, first interlayer wiring parts penetrating the insulator and electrically connecting the front face wiring parts and the back face terminals, and one or more second interlayer wiring parts embedded in the insulator to be in contact with the connection wiring part, and spaced apart from the back face terminals.
Abstract:
First (111) and second (112) signal wiring patterns are formed in a first conductor layer (101). A first electrode pad (121) electrically connected to the first signal wiring pattern through a first via (131) and a second electrode pad (122) electrically connected to the second signal wiring pattern through a second via (132) are formed in a second conductor layer (102) as a surface layer. A third conductor layer (103) is disposed between the first conductor layer and the second conductor layer with an insulator (105) interposed between those conductor layers. A first pad (141,151,161,171) electrically connected to the first via is formed in the third conductor layer. The first pad includes an opposed portion (141a,151b,161c,171d) which overlaps the second electrode pad as viewed in a direction perpendicular to the surface of a printed board and which is opposed to the second electrode pad through intermediation of the insulator. This enables reduction of crosstalk noise caused between the signal wirings.