Abstract:
This publication discloses a circuit-board construction and a method for manufacturing an electronic module, in which method at least one component (6) is embedded inside an insulating-material layer (1) and contacts (14) are made to connect the component (6) electrically to the conductor structures (14, 19) contained in the electronic module. According to the invention, at least one thermal via (22), which boosts the conducting of heat away from the component (6) is manufactured in the insulating-material layer (1) in the vicinity of the component (6).
Abstract:
A microelectronic assembly includes a dielectric element, first and second microelectronic elements, signal leads, and one or more jumper leads. The dielectric element has oppositely-facing first and second surfaces and first and second apertures extend between the surfaces. A plurality of electrically conductive elements are positioned thereon. Signal leads are connected to one or more of the microelectronic elements and extend through one or more of the first or second apertures to some of the conductive elements on the dielectric element. One or more jumper leads extend through the first aperture and are connected to a contact of the first microelectronic element. The one or more jumper leads span over the second aperture and are connected to a conductive element on the dielectric element.
Abstract:
A microelectronic assembly includes a dielectric element having at least one aperture and electrically conductive elements thereon including terminals exposed at the second surface of the dielectric element; a first microelectronic element having a rear surface and a front surface facing the dielectric element, the first microelectronic element having a plurality of contacts exposed at the front surface thereof; a second microelectronic element having a rear surface and a front surface facing the rear surface of the first microelectronic element, the second microelectronic element having a plurality of contacts exposed at the front surface and projecting beyond an edge of the first microelectronic element; and an electrically conductive plane attached to the dielectric element and at least partially positioned between the first and second apertures, the electrically conductive plane being electrically connected with one or more of the contacts of at least one of the first or second microelectronic elements.
Abstract:
Methods and apparatus are provided for an electronic panel assembly (EPA) (82, 83), comprising: providing one or more electronic devices (30) with primary faces (31) having electrical contacts (36), opposed rear faces (33) and edges (32) therebetween. The devices (30) are mounted primary faces (31) down on a temporary support (60) in openings (44) in a warp control sheet (WCS) (40) attached to the support (60). Plastic encapsulation (50) is formed at least between lateral edges (32, 43) of the devices (30) and WCS openings (44). Undesirable panel warping (76) during encapsulation is mitigated by choosing the WCS coefficient of thermal expansion (CTE) to be less than the encapsulation CTE. After encapsulation cure, the EPA (82) containing the devices (30) and the WCS (40) is separated from the temporary support (60) and, optionally, mounted on another carrier (70) with electrical contacts (36) exposed. Thin film insulators (85) and conductors (87) are desirably applied to couple electrical contacts (36) on various devices (30) to each other and to external terminals (88), thereby forming an integrated multi-device EPA (84).
Abstract:
An upper circuit board body has a first upper main surface and a first lower main surface. A lower circuit board body has a second upper main surface and a second lower main surface. A lower circuit board first mounting electrode and one or more lower circuit board second mounting electrodes are disposed on the second upper main surface. A first component is mounted on the one or more lower circuit board second mounting electrodes. A first conductor member is mounted on the lower circuit board first mounting electrode and is disposed on the left of the first component. A second conductor member is disposed on the first lower main surface, is connected to the upper end of the first conductor member, and overlaps at least a part of the first component as viewed in the downward direction.
Abstract:
A DC/DC converter includes N inductors and N power modules which correspond to N phases. The N inductors each include a plurality of inductor chips that are electrically connected in parallel to each other. The plurality of inductor chips are mounted separately on a main mounting surface and a sub-mounting surface of a printed circuit board. The sub-mounting surface is opposite to the main mounting surface.
Abstract:
A keyboard includes a base plate, a pressure sensing layer, plural key structures, a circuit board, a flexible layer and a controlling unit. The pressure sensing layer is disposed on the base plate and located under the circuit board. The flexible layer is disposed on the pressure sensing layer and located under the circuit board. While a key structure is depressed, a part of the key structure is penetrated through the circuit board to press the flexible layer, and a force is transmitted from the flexible layer to the pressure sensing layer. The controlling unit compares the force with a predetermined force value. According to the comparing result, the controlling unit generates a corresponding pressure sensing signal. Consequently, the use of a single key structure can achieve the functions of multiple keys.
Abstract:
Provided are systems and methods for a control assembly including: a first film that is in-molded that includes decorative graphics, a front surface and a rear surface; and a second film molded to the rear surface of the first film having a printed circuit that includes sensors, control circuits and interconnects and a front and rear surface.
Abstract:
An apparatus includes a cavity formed in a support structure, the support structure being operable to support a semiconductor device. A circuit element is disposed in the cavity in the support structure, and the cavity in the support structure is filled with an electrically non-conductive filling material so as to at least partially surround the circuit element with the non-conductive filling material. The semiconductor device is electrically connected to the circuit element. In an example embodiment, the circuit element is operable to substantially block direct current that is output by the semiconductor device or another semiconductor device.
Abstract:
A vehicle-mounted antenna device includes a base, a board, a circuit section, and a housing. The base is mountable on a roof of a vehicle. The board has an antenna element section and is stood on a surface of the base. The circuit section serves as at least part of a wireless communication circuit electrically connected to the antenna element section. The housing is made of a resin material and forms a projection of a vehicle outer shape. The board and the circuit section are located in space formed by the base and the housing. The board is stood on the surface of the base so that a first direction perpendicular to the surface of the base differs from a second direction equal to a thickness direction of the board. The circuit section implemented on the board at a position away from the base in the first direction.