Abstract:
전극 표면에 대한 다단계 습식 처리 과정을 도입한 커패시터 제조 방법을 제공한다. 본 발명의 일 관점에 의한 방법은, 커패시터의 하부 금속 전극을 형성하고, 하부 금속 전극 표면에 원하지 않게 존재할 수 있는 표면 산화층을 제거하기 위해 불산(HF) 또는/및 랄(LAL)을 포함하는 식각액으로제1습식 처리하고, 제1습식 처리 단계에 사용되는 식각액과 다른 식각액을 사용하여 원하지 않게 존재할 수 있는 표면 유기물을 제거하기 위해서 황산(H 2 SO 4 ) 또는 오존수를 포함하는 식각액으로 제2습식 처리한다. 하부 금속 전극 상에 고유전 물질로 유전막을 형성하고, 상부 금속 전극을 형성하여 커패시터를 완성한다.
Abstract:
본 발명의 불휘발성 메모리 소자의 제조 방법은 SONOS 구조를 갖는 불휘발성 메모리 소자를 제조하는 방법으로서, 전하 트랩층으로서의 실리콘 질화막과 컨트롤 게이트 전극으로서의 폴리실리콘막이 전기적으로 절연되는 구조를 만드는 방법이다. 먼저 반도체 기판상에 터널링층 및 전하 트랩층으로서의 실리콘 산화막-실리콘 질화막 패턴을 형성한다. 다음에 산소(O 2 ) 가스, 오존(O 3 ) 가스나 또는 아산화질소(N 2 O) 가스를 수소(H 2 ) 가스와 함께 제공하여 500-1150℃의 온도 및 1-760 torr의 압력에서 산소 래디컬(O * )를 발생시키거나 플라즈마를 이용하여 산소 래디컬을 발생시켜, 산소 래디컬(O * )이 노출된 실리콘 질화막 패턴의 상측 및 측부 표면 및 반도체 기판의 노출 표면과 반응하도록 하는 래디컬 산화 공정을 수행하여, 실리콘 질화막 패턴의 상부 및 측면상에 차폐층으로서의 실리콘 질화 산화막과, 반도체 기판의 노출 표면상에 게이트 절연막을 형성한다. 그리고 실리콘 질화 산화막 및 게이트 절연막 위에 컨트롤 게이트 전극을 형성한다.
Abstract:
혼합막을 채택하는 아날로그 커패시터 및 그것을 제조하는 방법이 개시된다. 상기 아날로그 커패시터는 하부전극, 상기 하부 전극 상부에 위치하는 상부전극 및 상기 하부 전극과 상기 상부전극 사이에 개재된 혼합막을 포함한다. 상기 혼합막은 서로 반대의 전압효율(VCC) 특성을 갖는 유전막들의 혼합막이다. 이에 따라, 상기 아날로그 커패시터의 VCC 특성을 최적화할 수 있다.
Abstract:
A semiconductor device having a capacitor of a multi-layer structure is provided to prevent a driving ability from being deteriorated by generation of a leakage current by maximizing the area of a capacitor while using a given design rule. A lower interconnection(150) is formed on a semiconductor substrate. The lower interconnection and the substrate are covered with a lower interlayer dielectric(200). At least one capacitor hole penetrates the lower interlayer dielectric to expose the lower interconnection. The exposed lower interconnection and the sidewall of the capacitor hole are covered with a cylindrical lower electrode. The lower interlayer dielectric in the vicinity of the lower electrode and the capacitor hole is covered with a cylindrical lower dielectric layer pattern. The lower dielectric layer pattern is covered with a cylindrical middle electrode body formed in the capacitor hole. The lower dielectric layer pattern on the lower interlayer dielectric is covered with a middle electrode extension part extended from the middle electrode body. The middle electrode body is covered with a cylindrical upper dielectric layer pattern. The upper dielectric layer pattern is covered with a cylindrical upper electrode. An upper interlayer dielectric(290) is formed on the substrate having the upper electrode. The first upper interconnection(320) is disposed on the upper interlayer dielectric, electrically connected to the lower interconnection and the upper electrode. The second upper interconnection(325) is disposed on the upper interlayer dielectric, electrically connected to the middle electrode extension part.
Abstract:
In a method of manufacturing a capacitor of a semiconductor device and an apparatus therefor, dielectric layers are deposited using only a source gas without a reactant gas and a curing process is performed a single time. As a result, process simplification, yield improvement, and equipment simplification are achieved. In a stand-alone memory or an embedded memory, the step coverage is enhanced and oxidation of a storage node contact plug is prevented. Also, in an analog capacitor, an RF capacitor, or a high-voltage capacitor, which uses thicker dielectric layers than the stand-alone capacitor or the embedded capacitor, the manufacturing process is greatly simplified.
Abstract:
PURPOSE: A MIM capacitor and a fabricating method thereof are provided to prevent a contact error between the first mold layer and a bottom electrode by using a conductive compound including a heat resistant metal. CONSTITUTION: A bottom electrode(18) of a dual layer is formed by depositing a conductive compound including a heat resistant metal and a platinum metal on a semiconductor substrate. A dielectric layer(22) is formed by depositing a high dielectric constant material on the bottom electrode of the dual layer. A top electrode(24) is formed by depositing the platinum metal on the dielectric layer. The conductive compound including the heat resistant metal is formed with one selected from a group including TiN, TiSiN, TiAIN, and TaN.
Abstract:
PURPOSE: A method for fabricating a capacitor of a semiconductor memory device is provided to stabilize an electrical characteristic and extend the lifetime of a product by stably growing a dielectric layer on the tilted etch surface of the second insulation layer such that the dielectric layer is formed in the corner between a lower electrode and an electrode layer that confront each other. CONSTITUTION: The first insulation layer(14) is interposed between a lower electrode(10) and the first metal interconnection(12) to planarize the upper part so that a lower layer is formed. The second insulation layer(30) and the third insulation layer(32) are sequentially stacked on the lower layer. An electrode formation region is etched to form a trench. A wet etch process is performed on the trench to make the second insulation layer formed of a tilted etch surface at the edge of the trench such that the second insulation layer has etch selectivity as compared with the third insulation layer. The first dielectric layer and the first electrode layer are deposited on the third insulation layer including the trench with the tilted etch surface of the second insulation layer.
Abstract:
PURPOSE: A method for fabricating a non-volatile memory(NVM) device with a silicon-oxide-nitride-oxide-silicon(SONOS) structure is provided to prevent electrical connection between a silicon nitride layer as a charge trap layer and a polysilicon layer as a control gate electrode by oxidizing the upper and side surfaces of the silicon nitride. CONSTITUTION: A silicon oxide pattern(213) as a tunneling layer and a silicon nitride pattern(215) as a silicon nitride pattern are formed on a semiconductor substrate(200). An oxide process is performed to form the silicon oxynitride layer(219) as a shielding layer on the upper and side surfaces of the silicon nitride pattern and to form a gate insulation layer on the exposed surface of the semiconductor substrate. The control gate electrode is formed on the silicon oxynitride layer and the gate insulation layer.