FLUIDIC STRUCTURES INCLUDING MEANDERING AND WIDE CHANNELS

    公开(公告)号:CA2604323A1

    公开(公告)日:2006-10-26

    申请号:CA2604323

    申请日:2006-04-19

    Abstract: The present invention relates generally to microfluidic structures, and more specifically, to microfluidic structures and methods including meandering an d wide channels. Microfluidic systems can provide an advantageous environment for performing various reactions and analyses due to a reduction in sample a nd reagent quantities that are required, a reduction in the size of the operati ng system, and a decrease in reaction time compared to conventional systems. Unfortunately, the small size of microfluidic channels can sometimes result in difficulty in detecting a species without magnifying optics (such as a microscope or a photomultiplier). A series of tightly packed microchannels, i.e., a meandering region, or a wide channel having a dimension on the order of millimeters, can serve as a solution to this problem by creating a wide measurement area. Although this invention mainly describes the use of meandering and wide channels in heterogeneous immunoassays on a microfluidic chip, this invention could be used for amplifying optical signals for other types of reactions and/or assays.

    Selective deposition of materials on contoured surfaces

    公开(公告)号:AU2002306862A1

    公开(公告)日:2002-11-05

    申请号:AU2002306862

    申请日:2002-03-25

    Abstract: The present invention is directed to a method of patterning materials, such as proteins, on a contoured surface by depositing them onto protrusions on the surface and to a cell containment device that may be constructed by this method. In one embodiment, the present invention is directed to a method of selectively depositing a material on a substrate including a contoured surface including a protrusion and a recess. The method includes applying a first fluid to the contoured surface of the substrate and allowing the first fluid to distribute across a portion of the contoured surface such that the first fluid contacts the protrusion and not the recess. The method also includes allowing a first material to deposit on the substrate where the substrate is in contact with the first fluid. Optionally, this method may further include applying a second fluid to the contoured surface of the substrate, allowing the second fluid to distribute across a portion of the contoured surface such that the second fluid contacts the recess, and allowing a second material to deposit on the substrate where the substrate is in contact with the second fluid. Optionally, the method may still further include applying a third fluid to the contoured surface of the substrate, allowing the third fluid to distribute across a portion of the contoured surface, and allowing a third material with an affinity for one of the first material and the second material to deposit on the substrate only where the one of the first material and the second material is deposited. In one embodiment of this method the first material is a cytophobic material, the second material is a cytophilic material and the third material is a cell. In another embodiment, the present invention is directed to a cell containment device, including a substrate having a contoured surface, a recess in the surface of the substrate, a cytophobic material connected to the surface of the substrate outside the recess and a cytophilic material connected to the recess.

Patent Agency Ranking