SELF-SUSTAINING DRONE AIRCRAFT FREIGHT AND OBSERVATION SYSTEM
    61.
    发明公开
    SELF-SUSTAINING DRONE AIRCRAFT FREIGHT AND OBSERVATION SYSTEM 审中-公开
    自治区货运和观测SYSTEM FOR无人机

    公开(公告)号:EP2720948A1

    公开(公告)日:2014-04-23

    申请号:EP11867771.5

    申请日:2011-06-17

    Inventor: Sing, Robert, L.

    Abstract: The self-sustaining drone aircraft freight and observation system (5) comprises a fleet of jet-powered drone aircraft (10) designed to carry freight (12) only. The drones (10) operate from a separate airfield in outlying areas to decrease land costs and to avoid disturbing residential and business areas. Navigation is automated using guidance from GPS satellites (16), and the aircraft (10) can be assisted by a hydraulic catapult (13) during takeoff to reduce the fuel payload. The observation component (18) includes sensors that can observe weather conditions and emergency signals from boats, ships and other sources. The system (5) may include a large-scale energy production center and multi-acre vegetable, herb and flower production center (26). The energy production center includes solar panels (30), fuel cells (38), and batteries (44). Thus, the system (5) does not need to be connected to the public utility electrical grid.

    THRUST VECTORING FREE WING AIRCRAFT
    65.
    发明公开
    THRUST VECTORING FREE WING AIRCRAFT 失效
    带飞翼和推力重定向的平面。

    公开(公告)号:EP0629164A1

    公开(公告)日:1994-12-21

    申请号:EP93907455.0

    申请日:1993-03-12

    Abstract: Un aéronef à décollage et à atterrissage verticaux (10) comprend une aile libre (16) constituée d'ailes situées sur les côtés opposés du fuselage (12) et interconnectées de manière à pouvoir tourner librement sans joints, dont le pas différentiel peut être ajusté par le pilote, par un ordinateur ou par télécommande. Pendant le lancement vertical, les gouvernes de profondeur (26) et de direction (24), ainsi que le réglage du pas différentiel des ailes commandent la profondeur, le lacet et le roulis, respectivement. Pendant le lancement, la gouverne de profondeur (26) incline le nez du fuselage (12) vers le bas afin de modifier le vecteur de poussée et accélérer horizontalement l'aéronef, alors que l'aile libre (16) tourne par rapport au fuselage (12) jusqu'à une position généralement horizontale afin de porter l'aéronef pendant le vol horizontal. La transition du vol horizontal au vol vertical est obtenue par le procédé inverse et l'aéronef peut être doucement récupéré dans ou sur une surface élastique telle qu'un filet (66).

    DRONE
    66.
    发明申请
    DRONE 审中-公开
    无人机

    公开(公告)号:WO2018024567A1

    公开(公告)日:2018-02-08

    申请号:PCT/EP2017/068852

    申请日:2017-07-26

    Abstract: Ensemble comportant un drone (1) et au moins une charge (37) largable embarquée sur le drone, le drone comportant un système de traitement de données embarqué, la charge (37) largable comportant au moins un capteur délivrant une information utile pour connaître sa trajectoire et des actuateurs de commande de gouvernes permettant de l'orienter dans sa chute, étant reliée au drone (1) par une fibre optique (70), la charge et le drone étant agencés pour échanger des informations via la fibre optique durant la chute de la charge, la charge transmettant des données provenant dudit au moins un capteur et le drone transmettant des données de pilotage des actuateurs, établies en tenant compte de celles reçues de la charge, afin de guider la charge vers un objectif prédéfini.

    Abstract translation:

    组件,其包括一个UAV(1)和至少一个电荷(37)抛板E在无人驾驶飞机E,无人驾驶飞机的系统,包括与egrave;我处理数据E ES-基板E;,负载( 37)可释放与至少一个去传感器;提供用于Conna&Icirc有用的信息;是其轨迹和控制表面,以控制致动器来定位在其下降,é为连接(1)通过光纤ée本UAV 光学器件(70),所述负载和所述无人驾驶飞机作为AGENC(E S),用于经由光纤中的负载的下落期间é变化的信息,从所述载荷传递数据E ESé至少一个传感器和所述无人驾驶飞机发射 数据&eacute的; ES转向致动器,考虑到那些重新&ccedilétablies;上的电荷的UE,以引导负载到PR&eacute目标;Dé完成

    SYSTEM AND METHOD FOR LAUNCHING AND LANDING UAVs
    67.
    发明申请
    SYSTEM AND METHOD FOR LAUNCHING AND LANDING UAVs 审中-公开
    无人机启动系统和方法

    公开(公告)号:WO2013055265A1

    公开(公告)日:2013-04-18

    申请号:PCT/SE2011/051218

    申请日:2011-10-12

    CPC classification number: B64C39/024 B64C2201/084 B64C2201/182 B64C2201/201

    Abstract: The present invention relates to a system and method for automatic launch and landing UAVs (Unmanned Aerial Vehicles). The system comprises a ground station adapted for automatic UAV launching and landing. The ground station comprises: means for communication with UAVs present within a range from the ground station; an arrangement adapted for launching UAVs and for capturing in-flight UAVs, said arrangement having at least one controllable arm; a computing unit arranged to compute a meeting point between the at least one controllable arm and one in-flight UAV based on data communicated between the UAV and the ground station by means of said means for communication; and a control unit arranged to control the at least one arm to capture an in-flight UAV at the meeting point or to launch one UAV. The system is characterized in that the control unit is arranged to control the at least one arm to move a UAV between the meeting point and at least one storage position.

    Abstract translation: 本发明涉及一种自动发射和着陆UAV(无人机)的系统和方法。 该系统包括适用于自动无人机发射和着陆的地面站。 地面站包括:与地面站范围内存在的无人机通信的装置; 一种适于发射无人机和用于捕获飞行中的无人机的装置,所述装置具有至少一个可控臂; 计算单元,其被布置为基于通过所述用于通信的装置在所述无人机和所述地面站之间传送的数据来计算所述至少一个可控臂与一个飞行中UAV之间的会合点; 以及控制单元,其被布置成控制所述至少一个臂在所述会合点捕获飞行中的UAV或者发射一个UAV。 该系统的特征在于,控制单元被布置成控制至少一个臂以在会议点和至少一个存储位置之间移动UAV。

    SELF-SUSTAINING DRONE AIRCRAFT FREIGHT AND OBSERVATION SYSTEM
    68.
    发明申请
    SELF-SUSTAINING DRONE AIRCRAFT FREIGHT AND OBSERVATION SYSTEM 审中-公开
    自主持续飞机飞行和观察系统

    公开(公告)号:WO2012173632A1

    公开(公告)日:2012-12-20

    申请号:PCT/US2011/040981

    申请日:2011-06-17

    Inventor: SING, Robert, L.

    Abstract: The self-sustaining drone aircraft freight and observation system (5) comprises a fleet of jet-powered drone aircraft (10) designed to carry freight (12) only. The drones (10) operate from a separate airfield in outlying areas to decrease land costs and to avoid disturbing residential and business areas. Navigation is automated using guidance from GPS satellites (16), and the aircraft (10) can be assisted by a hydraulic catapult (13) during takeoff to reduce the fuel payload. The observation component (18) includes sensors that can observe weather conditions and emergency signals from boats, ships and other sources. The system (5) may include a large-scale energy production center and multi-acre vegetable, herb and flower production center (26). The energy production center includes solar panels (30), fuel cells (38), and batteries (44). Thus, the system (5) does not need to be connected to the public utility electrical grid.

    Abstract translation: 自维持无人机飞机运输和观察系统(5)包括一个仅用于运输(12)的喷气式无人机(10架)舰队。 无人机(10)从外围地区的独立机场运营,以降低土地成本,避免住宅和商业区域的不安。 导航使用GPS卫星(16)的指导进行自动化,飞机(10)可在起飞期间由液压弹射器(13)辅助以减少燃料有效载荷。 观察部件(18)包括能够观察船舶,船舶和其他来源的天气状况和紧急信号的传感器。 系统(5)可以包括一个大型能源生产中心和多英亩蔬菜,草药花卉生产中心(26)。 能源生产中心包括太阳能电池板(30),燃料电池(38)和电池(44)。 因此,系统(5)不需要连接到公共事业电网。

    UNMANNED AIRBORNE VEHICLE FOR GEOPHYSICAL SURVEYING
    69.
    发明申请
    UNMANNED AIRBORNE VEHICLE FOR GEOPHYSICAL SURVEYING 审中-公开
    不定期的AIRBORNE车辆地球物理勘测

    公开(公告)号:WO2006037237B1

    公开(公告)日:2006-06-15

    申请号:PCT/CA2005001557

    申请日:2005-10-11

    Abstract: An un-manned airborne vehicle (UAV), for acquiring aeromagnetic data for geophysical surveying at low altitude on land or over water, comprising an extended fuselage that is adapted to hold and maintain magnetometer and a magnetic compensation magnetometer at a minimum distance from the avionics and propulsion systems of the UAV. The magnetometer measures magnetic anomalies and the magnetic compensation magnetometer measures magnetic responses corresponding to the pitch, yaw and roll of the UAV. A data acquisition system stores and removes the magnetic response measurements from the magnetic anomaly measurements. The data acquisition system also stores a survey flight plan and transmits the same to the avionics system. The generator of the UAV is shielded and the propulsion system is stabilized to reduce magnetic and vibrational noises that can interfere with the operation of the magnetometer.

    Abstract translation: 一种无人载客空中飞行器(UAV),用于获取陆上或水上低空地球物理测量的航空数据,包括一个延伸的机身,适用于将磁力计和磁性补偿磁力计保持在离飞行距离最小的距离 和无人机的推进系统。 磁力计测量磁异常,磁补偿磁力计测量对应于无人机的俯仰,偏航和滚动的磁响应。 数据采集​​系统从磁异常测量中存储和去除磁响应测量。 数据采集​​系统还存储一个调查飞行计划,并将其传送到航空电子系统。 无人机的发电机被屏蔽并且推进系统被稳定以减少可能干扰磁力计操作的磁和振动噪声。

    AIRCRAFT LANDING METHOD AND DEVICE
    70.
    发明申请
    AIRCRAFT LANDING METHOD AND DEVICE 审中-公开
    飞机着陆方法和装置

    公开(公告)号:WO2006059324A1

    公开(公告)日:2006-06-08

    申请号:PCT/IL2005/001276

    申请日:2005-11-30

    Inventor: SIRKIS, Omri

    Abstract: A method for landing a fixed wing aircraft is provided in which an inversion maneuver is performed so that the aircraft's back is facing the ground, and the aircraft's underside is facing away from the ground. After initiation or completion of this maneuver, deep stall is induced, and the aircraft descends almost vertically to land on its upper side, thus minimizing impact loads or damage on its underside. In a particular aerodynamic arrangement configured for carrying out the method, a flap (24), which may be stowed during normal flight, is deployed in a manner such as to aerodynamically induce a negative pitching moment on the aircraft and deep stall.

    Abstract translation: 提供了一种用于着陆固定翼飞机的方法,其中执行反演机动,使得飞机的背面面向地面,并且飞机的下侧面向远离地面。 在开始或完成这个机动之后,引起深度失速,飞机几乎垂直下降,降落在其上侧,从而最小化其下侧的冲击载荷或损坏。 在配置用于执行该方法的特定空气动力学配置中,可以以正常飞行中的方式存放的翼片(24)以空气动力学方式在飞行器和深度档位上引起负俯仰时刻。

Patent Agency Ranking