Abstract:
A thermal bend actuator ( 6 ) is provided with a group of upper arms ( 23, 25, 26 ) and a group of lower arms ( 27, 28 ) which are non planar, so increasing the stiffness of the arms. The arms ( 23, 25, 26,27,28 ) may be spaced transversely of each other and do not overly each other in plan view, so enabling all arms to be formed by depositing a single layer of arm forming material
Abstract:
A micrometer sized, single-stage, vertical thermal actuator with controlled bending capable of repeatable and rapid movement of a micrometer-sized optical device off the surface of a substrate. The vertical thermal actuator is constructed on a surface of a substrate. At least one hot arm has a first end anchored to the surface and a free end located above the surface. A cold arm has a first end anchored to the surface and a free end. The cold arm is located above the hot arm relative to the surface. The cold arm is adapted to provide controlled bending near the first end thereof. A member mechanically and electrically couples the free ends of the hot and cold arms such that the actuator bends generally at the flexure so that the member moves away from the substrate when current is applied to at least the hot arm.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consumming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause futher arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consumming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause futher arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
The invention relates to the preparation of multilayer microcomponents which comprise one or more films, each consisting of a material M selected from metals, metal alloys, glasses, ceramics and glass-ceramics. The method consists in depositing on a substrate one or more films of an ink P, and one or more films of an ink M, each film being deposited in a predefined pattern selected according to the structure of the microcomponent, each film of ink P and each film of ink M being at least partially consolidated before deposition of the next film; effecting a total consolidation of the films of ink M partially consolidated after their deposition, to convert them to films of material M; totally or partially removing the material of each of the films of ink P. An ink P consists of a thermoset resin containing a mineral filler or a mixture comprising a mineral filler and an organic binder. An ink M consists of a mineral material precursor of the material M and an organic binder. The inks are deposited by pouring or by extrusion.
Abstract:
A microelectromechanical device comprising a mechanical structure extending along a longitudinal direction, linked to a planar substrate by an anchorage situated at one of its ends and able to flex in a plane parallel to the substrate, the mechanical structure comprises a joining portion, which links it to each anchorage and includes a resistive region exhibiting a first and second zone for injecting an electric current to form a resistive transducer, the resistive region extending in the longitudinal direction from an anchorage and arranged so a flexion of the mechanical structure in the plane parallel to the substrate induces a non-zero average strain in the resistive region and vice versa; wherein: the first injection zone is carried by the anchorage; and the second injection zone is carried by a conducting element not fixed to the substrate and extending in a direction, termed lateral, substantially perpendicular to the longitudinal direction.
Abstract:
An ultra low power thermally-actuated oscillator and driving circuit thereof are provided. The ultra low power thermally-actuated oscillator includes proof masses, thermally-actuated element and a plurality of driving elements. The proof masses is symmetrically disposed and suspended from a substrate by spring structure. The thermally-actuated element is a line structure to effectively reduce the motional impedance and direct current power. Wherein, the thermally-actuated element is connected to the proof masses or the spring structure. The plurality of driving elements are respectively disposed on both sides of the thermally-actuated element to provide a driving current. When the driving current flows through the thermally-actuated element, the thermally-actuated element will be deformed and thus the proof masses will be driven to produce a harmonic oscillation.