Abstract:
In general, in one aspect, the invention features methods that include interferometrically monitoring a distance between an interferometry assembly and a measurement object along each of three different measurement axes while moving the measurement object relative to the interferometry assembly, determining values of a first parameter and a second parameter for different positions of the measurement object from the monitored distances, wherein for a given position the first parameter is based on the monitored distances of the measurement object along each of the three different measurement axes at the given position, and for a given position the second parameter is based on the monitored distance of the measurement object along each of two of the measurement axes at the given position, and deriving information about a surface figure profile of the measurement object from the first and second parameter values.
Abstract:
A first tunable wavelength pulse light source is driven by a reference signal to emit a first optical pulse. An optical demultiplexer demultiplexes a first optical pulse emitted from the first pulse light source into a reference optical pulse and an incident optical pulse to be sent into an object to be measured. An optical multiplexer multiplexes the reference optical pulse and an outgoing optical pulse passing through the object to output multiplexed light. A second pulse light source generates a second optical pulse which is synchronous with the first optical pulse and delays a predetermined time for each period of the first optical pulse. A sampling unit receives the multiplexed light and the second optical pulse to obtain an optical pulse train signal proportional to the intensity of the multiplexed light obtained in synchronism with the second optical pulse. From the optical pulse train signal from the sampling unit, a signal processor obtains an envelope formed by peaks of individual optical pulses forming the optical pulse train. The wavelength dispersion of the object is obtained by measuring the delay time of the outgoing optical pulse passing through the object on the basis of intervals between the peaks of the envelope.
Abstract:
An inexpensive and accurate wavemeter for measuring the wavelength of monochromatic light is described. The device uses the wavelength dependent phase lag between principal polarization states of a length of birefringent material (retarder) as the basis for measuring the optical wavelength. The retarder is sandwiched between a polarizer and a polarizing beamsplitter and is oriented such that its principal axes are non-orthogonal to the axis of the polarizer and the principal axes of the beamsplitter. As a result of the disparity in propagation velocities between the principal polarization states of the retarder, the ratio of the optical power exiting the two ports of the polarizing beamsplitter is wavelength dependent. If the input wavelength is known to be within a specified range, the measurement of the power ratio uniquely determines the input wavelength. The device offers the advantage of trading wavelength coverage for increased resolution simply through the choice of the retarder length. Implementations of the device employing both bulk-optic components and fiber-optic components are described.
Abstract:
The present invention is a wide field of view electro-optic detector and locator of coherent light of unknown wavelength that includes a collecting optic that collimates incoming optical radiation, a common-path electro-optic polarization interferometer placed at an exit pupil plane, an imaging optic, a detector array placed one focal length away from said imaging optic, an image processor that processes the incoming signal in a manner that is independent of the phase of the modulation signal, and an output device. The preferred collecting optic includes a first lens, a field lens, and a collimating lens. The preferred interferometer includes a first polarizer, a liquid crystal variable phase modulator, a fixed phase retarder, and a second polarizer.
Abstract:
A method and system for measuring the phase difference between two orthogonally polarized components of a test beam as well as the intensities of these two components. A partially-polarizing beamsplitter (101) divides a polarized test beam (103) into first and second spatially-separated beams (154,104). The first beam (154) passes through a wave plate (160) oriented so as to retard the phase of the s polarization component with respect to the p polarization component. The first beam (154) then passes through a first polarizing beamsplitter (155), to produce a first pair of spatially separated output beams (156,157) with mutually-orthogonal linear polarizations. The second beam (104) is likewise passed through a second polarizing beamsplitter (105) to produce a second pair of linearly-polarized output beams (106,107). Photodetectors (108,109,158,159) send an electrical signals proportional to the intensities of the beams (106,107,156,157) to a computer (99). The computer (99) calculates the phase difference between the s and p polarization components of the test beam, as well as the relative intensities of the s and p polarization components of the test beam. The invention also provides methods and means for calibrating the inventive apparatus using polarizing elements (52,53,54) and a beam block (51). The calibration procedure determines the phase retardance of the wave plate (155), the polarizing characteristics of the partially-polarizing beamsplitter (101), and the electrical characteristics of each of the photodetectors (108.109,158,159).
Abstract:
The present document discloses a method for measuring the carrier-envelope phase, CEP, offset of ultrashort light pulses, the method comprising: generating an optical interference signal encoding the CEP offset of a light pulse to be measured; applying at least two spectral filters in parallel to the generated interference signal, wherein the transmission functions of the spectral filters are periodic and the at least two spectral filters have partial or fully orthogonal components among themselves; detecting each signal filtered by each of the at least two spectral filters to obtain a magnitude for each of the filtered signals; converting the two obtained magnitudes to a polar representation having a radius and an angle; outputting the CEP offset from the angle of the converted polar representation. It is also disclosed a corresponding system, a field-resolved spectrometer including the system and the use of the system in spectroscopy or in field-resolved spectroscopy.
Abstract:
An apparatus and method for measuring amplitude and/or phase of a molecular vibration uses a polarization modulated pump beam and a stimulating Stokes beam on a probe of a scanning probe microscope to detect a Raman scattered Stokes beam from the sample. The detected Raman scattered Stokes beam is used to derive at least one of the amplitude and the phase of the molecular vibration.
Abstract:
A wavefront sensing technique using Polarization Rotation INTerferometry (PRINT) provides a self-referencing, high-resolution, direct measurement of the spatially dependent phase profile of a given optical beam. A self-referencing technique is used to create a reference beam in the orthogonal polarization and a polarization measurement to measure the spatial-dependent polarization parameters to directly determine the absolute phase profile of the beam under test. A high-resolution direct measurement of the spatially-resolved phase profile of one or more optical beams is realized.
Abstract:
A method and apparatus for polarization-independent RF spectrum analysis of an optical source, the apparatus including a coupler for coupling the light from an optical source under test with light from a continuous-wave (CW) laser. A nonlinear apparatus is coupled to the coupler for modulating the electric field of the light from the CW laser using the temporal intensity of the light from the source under test to generate a modulated signal. The nonlinear apparatus is adapted to mitigate or compensate for any phase difference between polarization components of signals propagated through the nonlinear apparatus. A polarizer is coupled to the nonlinear apparatus for generating a linearly polarized signal from the modulated signal. An optical spectrum analyzer is coupled to the polarizer for measuring the optical spectrum of the linearly polarized signal to determine an RF spectrum of the optical source under test.