Abstract:
A field test-kit for analyzing arsenic concentration in water samples incudes a portable infrared beam photometer for measuring light absorbance in aqueous specimens. An infrared ligth emittng diode (120A, 120B) is configured to direct a beam of light through a specimen. A photodetecotr diode (130A, 130B) measures the intensity of light passing through the specimen. The photodetector (130A, 130B) output voltages relate to the light absorbed in the specimen and are displayed on a LCD (160) screen. To test for arsenic, molybdenum-blue color complexes. The light absorbance of a specimen with both arsenates and phosphates bound in molybdenum-blue color complexes is compared to that of a reference specimen in which phosphates but not arsenates are bound and converted. A quantitative value for the arsenic concentration in the water sample is determined from the differential light absorbance of the two specimens.
Abstract:
A spectrometer configurable for field analyses of chemical properties of a material is provided. The spectrometer includes: at least one sensor adapted for providing Fourier transform infrared spectroscopy (FTIR) surveillance and at least another sensor for providing Raman spectroscopy surveillance. The spectrometer can be provided with a user accessible instruction set for modifying a sampling configuration of the spectrometer. A method of determining the most likely composition of a sample by at least two technologies using the spectrometer is also provided.
Abstract:
A system comprising: a mobile device, comprising: a camera configured to capture multiple images of a subject; a processor configured to identify a first image of the captured images as a blue frame, wherein the image was captured while the subject was illuminated by blue light, and identify a second image of one of the captured images as a white frame, wherein the image was captured while the subject was illuminated by white light; associate the blue frame with the white frame; detect a feature depicted in the blue frame that is not depicted in the associated white frame, indicate the detection of the feature to a user; and a user interface display configured to separately render the blue frame and the white frame.
Abstract:
A spectrometer configurable for field analyses of chemical properties of a material is provided. The spectrometer includes: at least one sensor adapted for providing Fourier transform infrared spectroscopy (FTIR) surveillance and at least another sensor for providing Raman spectroscopy surveillance. The spectrometer can be provided with a user accessible instruction set for modifying a sampling configuration of the spectrometer. A method of determining the most likely composition of a sample by at least two technologies using the spectrometer is also provided.
Abstract:
The disclosure generally relates to a method and apparatus for multi-wavelength imaging spectrometer. More specifically, in one embodiment, the disclosure relates to an optical filter for passing photons therethrough. The filter includes a first filter stage and a second filter stage. The first filter stage may include a first retarder element (450) and a first liquid crystal cell (455). The first element may include an input face and an output face. One of the first element faces is not oriented substantially normal to the trajectory of photons passing through the filter.
Abstract:
A color measurement system includes a hand held color measurement instrument, which may be provided with a wireless interface to a computer. The color measurement system includes a scanning guide for holding the hand held color measurement instrument in proper alignment with a color target. The scanning guide includes a calibration reference to allow convenient calibration of the hand-held color measurement instrument. The hand-held color instrument includes an illumination ring to provide visual feedback to the user. The color of the illumination ring changes in order to display a color similar to that being read by the hand-held color measurement instrument. Color management profiling of the hand held color measurement instrument illumination ring improves the color rendition capability of the illumination ring.
Abstract:
A field test-kit for analyzing arsenic concentration in water samples is provided. The kit includes a portable infrared beam photometer for measuring light absorbance in aqueous specimens. An infrared light emitting diode is configured to direct a beam of light through a specimen. A photodetector diode measures the intensity of light passing through the specimen. The photodetector output voltages relate to the light absorbed in the specimen and are displayed on a liquid crystal display screen. The kit is assembled using off-the-shelf electronic and opto-electronic components that have low power requirements. Dry cell batteries or solar cells power the kit. To test for arsenic, molybdenum based chemistries are used to selectively bind and convert arsenates and phosphates in the specimen into molybdenum-blue color complexes. The light absorbance of a specimen with both arsenates and phosphates bound in molybdenum-blue color complexes is compared to that of a reference specimen in which phosphates but not arsenates are bound and converted. The differential light absorbance of the two specimens is used to arrive at a quantitative value for the arsenic concentration in the water sample.
Abstract:
Es ist eine tragbare Miniatur-Spektralsonde für die Messung spektrometrischer Daten einer Meßprobe bekannt, mit einem Gehäuse, das mit einem Austrittsfenster für das von einer Lichtquelle emittierte Licht versehen ist, und in dem die Lichtquelle für das Beleuchten der Meßprobe, ein Detektor für die Erfassung und Umsetzung optischer Signale in elektrische Signale, eine Abbildungsoptik zur Abbildung der Lichtquelle auf die Meßprobe und auf den Detektor, und eine Stromversorgungseinheit für Lichtquelle und Detektor. Um eine derartige tragbare Miniatur-Spektralsonde mit erweiterten Einsatzmöglichkeiten bereitzustellen, wird erfindungsgemäß vorgeschlagen, daß die Lichtquelle eine Miniatur-UV-Lampe umfaßt.