Abstract:
A hyperspectral imaging system has a processor to receive hyperspectral imaging parameters and produce a series of images to be acquired at a series of retardances at a series of retardance times, a hyperspectral imaging component having an input polarizer to polarize an incoming beam of light, a liquid crystal variable retarder to receive the polarized beam of light and to produce wavelength-dependent polarized light, an output polarizer to receive the wavelength-dependent polarized light and to convert polarization state information into a form detectable as light intensity, a voltage source connected to the liquid crystal variable retarder, and a retardance controller. The retardance controller receives the series of retardances at a series of retardance times and produces a series of voltages at a series of voltage times to apply to the liquid crystal variable retarder. A focal plane array, synchronized with the retardance controller, receives the light in a form detectable as light intensity and converts the light to a series of images.
Abstract:
A Fourier-domain optical coherence tomography (OCT) imager is presented. An OCT imager according to the present invention can have an auto-alignment process. The auto-alignment process automatically adjusts at least one optical component of a spectrometer of the imager so that the spectrometer is aligned during an imaging session. In addition to the auto-alignment process, OCT spectra are normalized for background spectra and for noise characteristics in order to provide a more accurate and clear OCT image.
Abstract:
Fourier Transform Spectroscopy is performed using a birefringent device to vary path difference systematically for all regions of an image simultaneously, so that a separate interferogram is collected for each image region by combining intensity values in multiple images. The optics may allow a theoretical efficiency of 100 % in light throughput.
Abstract:
Das Polarisationsinterferometer weist eine Lichtquelle (1), einen Kollimator (2), ein erstes polarisierendes Element (3), ein System von doppelbrechenden Elementen (4,5,6) und ein zweites polarisierendes Element (7) auf, welches das aus dem doppelbrechenden Element (4,5,6) austretende Licht polarisiert und einem Photonendetektor (8) zuführt. Das doppelbrechende Element (4,5,6) besteht dabei aus zwei, längs entgegengesetzter Seitenflächen gegeneinander verschiebbar angeordneten, sich zu einem Quader ergänzenden, optischen Keile (5,6) und einer als Kompensator dienenden doppelbrechenden planparallelen Platte (4). Die optische Achse des Kompensators (4) ist gegenüber derjenigen der beiden Keile (5,6) in der Ebene senkrecht zum Lichtstrahl um einen endlichen Winkel verdreht, wobei die optischen Achsen der beiden Keile (5,6) übereinstimmen. Die optischen Achsen der beiden Polarisatoren (3,7) stehen senkrecht oder parallel zueinander und sind nicht parallel zu den Achsen der beiden Keile (5,6) des doppelbrechenden Elementes (4,5,6) ausgerichtet. Ein monochromatischer Lichtstrahl (9) wird in den von der Lichtquelle (1) erzeugten parallen Lichtstrahl eingekoppelt und nach Durchquerung mindestens des doppelbrechenden Elementes (4,5,6) wieder ausgekoppelt und auf einen Photonendetektor (13) geführt.
Abstract:
L'interferometre, de preference du type de Michelson, possede des reflecteurs (19, 21) associes aux bras de l'interferometre (15, 17) qui sont stationnaires et le balayage est effectue par le mouvement un element de refraction en forme de coin (23) dans l'un des bras, l'orientation de l'element et sa direction de mouvement (24) etant dans des directions specifiques mathematiquement derivees qui diminuent les deplacements en translation du rayon optique transmis.
Abstract:
Systems and methods according to exemplary embodiments of the present disclosure can be provided that can efficiently detect the amplitude and phase of a spectral modulation. Such exemplary scheme can be combined with self-interference fluorescence to facilitate a highly sensitive depth localization of self-interfering radiation generated within a sample. The exemplary system and method can facilitate a scan-free depth sensitivity within the focal depth range for microscopy, endoscopy and nanoscopy.
Abstract:
Described herein is a hyperspectral imaging system (500) in which a polarising beam splitter (510), a Wollaston prism (520), an optical system (530), and a plane mirror (540) are arranged on an optical axis (550) of the imaging system (500). An imaging detector (560) is provided on which radiation is focussed by an imaging lens (570). The Wollaston prism (520) is imaged on itself by the optical system (530) and the plane mirror (540) so that translation of the Wollaston prism (520) in a direction parallel to a virtual split plane of the prism effectively provides an optical path length difference that is the same for all points in the object field.
Abstract:
The present invention relates to an imaging apparatus and comprises input and output polarisers (20,28), a first polarising beam splitter (22) and at least one additional polarising beam splitter (24), a light sensitive detector (30) and focussing means (26) arranged on an axis. The input polariser (20) resolves incident light into a single linear polarisation state. The first polarising beam splitter (22) receives light from the input polarises (20), and resolves it into equal magnitude orthogonally polarised rays which are mutually spaced and have a path difference therebetween. The or each additional polarising beam splitter (24) is arranged to receive light from the first polarising beam splitter (22). The transmission axis of the output polariser (28) is parallel to or perpendicular to the transmission axis of the input polarises (20) to resolve the orthogonally polarised light rays having past through the or each additional polarising beam splitter (24) into the same or perpendicular polarisation state as light resolved by the, first polariser (20). The first polarising beam splitter (22), the or each additional polarising beam splitter (24) and the focussing means (26) are mutually spaced such that said mutually spaced rays are brought to coincidence whereby interference fringes are produced, the detector (30) being arranged to detect the interference fringes. One beam splitter (24) is mounted for movement perpendicular to said axis, whereas the other beam splitter(s) (22) is/are rigidly mounted against movement.