Abstract:
본 발명은, 표면의 미세한 구조를 정확하게 계측할 수 있으며, 3차원적인 구조적 특징을 평가할 수 있는 표면미세구조 계측방법, 표면미세구조 계측프로그램 및 X선 산란강도 측정장치를 제공한다. 표면미세구조 계측방법에서는, 시료표면에 미소한 입사각으로 X선을 조사하여, 산란강도를 측정하고, 표면상의 미세구조에 의해, 표면에 수직인 방향으로 1 또는 복수의 층이 형성되며, 층 내에서 상기 표면에 평행한 방향으로 단위구조체가 주기적으로 배열되어 있는 시료 모델을 가정하며, 층에 의해 생기는 굴절 및 반사의 효과를 고려하여, 미세구조에 의해 산란된 X선의 산란강도를 계산하고, 시료 모델에 의해 산출되는 X선의 산란강도를 측정된 산란강도에 피팅한다. 그리하여, 피팅의 결과, 단위구조체의 형상을 특정하는 파라미터의 최적값을 결정한다. 이것에 의해, 미세한 구조를 정확하게 계측할 수 있다.
Abstract:
PURPOSE: A slit member of an X-ray examination device and a manufacturing method thereof are provided to improve precision of an examination by preventing the influx of undesirable X-rays, thereby enhancing the precision of the examination. CONSTITUTION: A slit member of an X-ray examination device(100) comprises absorption units(110) and transmission units(120). The absorption units are separately arranged in a height direction on a path of X-rays scattered from a sample to an inspection unit, composed of a plurality of thin plates which form the absorption units, and absorb the X-rays being reflected or scattered at a portion extrinsic to the sample. The transmission units fix the thin plates by being interposed between the absorption units and transmit the X-rays scattered from the sample to the inspection unit. Lines extended from the thin plates meet at one point.
Abstract:
본 발명은 물체의 구성원소를 비파괴식으로 분석하는 장치 및 방법에 관한 것으로, 물체에 의한 방사선의 컴프턴 산란을 계수하여 물체의 구성원소를 분석하고, 이를 토대로 물체의 원소 구성을 3차원 영상화시키는 기술에 관한 것이다. 본 발명에 따른 물체의 구성원소 분석방법은, 분석대상이 물체에 대해 계측된 산란 감마선 에너지 분포함수로부터 계측에 사용된 검출기의 응답함수를 디컨벌루션하여 물체 내의 미지 원소의 산란전 전자 운동량 분포함수를 구함으로써 미지 원소의 종류를 판정한다. 컴프턴, 산란, 감마선, 비파괴, 구성원소, 운동량분포함수, 에너지분포함수, 3차원, 영상화.
Abstract:
A system and methods are provided for imaging an object, based on activating an array of discrete X-ray sources in a prescribed temporal pattern so as to illuminate the object with a beam varying in spatial orientation, and detecting X-rays of the beam after interaction with the object and generating a detector signal. An image of the object may then be constructed on the basis of the time variation of the detector signal. The discrete X-ray sources maybe moved during the course of inspection, moreover, the prescribed temporal pattern may constitute a Hadamard code. The discrete sources may be carbon nanotube x-ray sources.
Abstract:
PURPOSE: A small-angle scattering measuring device for radiate light is provided to increase the precision of experiments by integrally controlling all parts relating to the measurement and measuring data required for analyzing scattering data by a main control part, and conveniently carry out the small-angle scattering experiments required for analyzing the structure of a high molecule. CONSTITUTION: A small-angle scattering measuring method for radiate light includes a beam line(100), through which input radiate light passes and is scattered by the reaction with a predetermined sample for analyze the structure of the sample, for outputting a signal indicating the scattering, a beam line control part(110) for controlling predetermined parts of the beam line to control the radiate light passing through the beam line, a signal detection part(120) for detecting a signal of the scattered radiate light which passes the beam line, and a main control part(130) for communicating with the beam line control part and storing and displaying the signals received from the signal detection part.
Abstract:
PURPOSE: A small-angle scattering measuring method for radiate light is provided to store and display precise measurement data and information on the experimental environment relating to the measurement in real time by a main control part which controls all controllable parts of a device for measuring the small-angle scattering of radiate light. CONSTITUTION: A small-angle scattering measuring method for radiate light includes the steps of initiating a beam line, a beam line control part, and a signal detection part by a main control part(2000), inputting a predetermined set value and a control command to the beam line control part and the signal detection part by the main control part(2100), operating the beam line control part and the signal detection part by the main control part(2200), inputting a strength of a light source in an ionization chamber in the beam line from the beam line control part to the main control part(2300), controlling a temperature of a sample die, on which a predetermined sample is positioned to react with radiate light in the beam line, output from the beam line control part(2400), inputting a scattering result of the radiate light reacted with the sample to the main control part(2500), and storing and displaying an image of the scattering result of the radiate light by the main control part(2600).
Abstract in simplified Chinese:本发明系关于一设备,其包含在具有一轴之平面中固持样本之样本支撑件,该平面界定借由其分离之第一及第二区域。第一区域中之射线源架座围绕该轴旋转,且该射线源架座上之X射线源引导X射线之第一及第二入射射束以第一及第二角度沿与该轴正交之射束轴照射于样本上。第二区域中之侦测器架座在与轴正交之一平面中移动,且该侦测器架座上之X射线侦测器回应于第一及第二入射射束而接收透射通过样本之X射线之第一及第二绕射射束,且回应于所接收之第一及第二绕射射束而分别输出第一及第二信号。处理器分析该等第一及第二信号,以判定样本之表面之轮廓。
Abstract in simplified Chinese:本发明之技术课题在于,即使在孔隙14或粒子16无序分散于薄膜10中,观测不出绕射线情况下,仍可使用X射线小角度散射测定来求出孔隙率或粒子率。
其大略区分有三种方法。第1方法使用孔隙率或粒子率已知的试料来决定X射线小角度散射设备的设备常数,使用该设备常数算出未知的孔隙率或粒子率。第2方法准备基质密度虽未知却彼此相同,孔隙率或粒子率不同的复数试料,对各试料求出X射线小角度散射的尺度因子,使用此等尺度因子,根据“试料间的基质密度变成最小”的条件,决定各试料的基质密度。根据该基质密度及尺度因子,算出孔隙率或粒子率。于基质密度已知,粒子密度未知情况下,第3方法采用类似于第2方法的方法。