Abstract:
An electron beam apparatus includes: a cathode configured to emit electrons; an anode that is an electrode which forms an electric field such that an electron beam is formed by the electrons emitted from the cathode, and that is formed with a first hole through which the electron beam passes; an aperture member formed with an opening that shades a part of the electron beam which passes through the anode; and a convergence electrode that is an electrode which forms an electric field such that the electron beam which passes through the opening converges, and that is configured to include one single-hole electrode formed with a second hole through which the electron beam passes.
Abstract:
A multi charged particle beam writing apparatus includes a unit to calculate a predetermined function expression by a correction coefficient that corrects an open area of each opening for forming a beam group, wherein the predetermined function expression minimizes a sum of squared values of all the beam groups, where each of the squared values is calculated by squaring a difference between a current value measured of the beam group and a sum of products for the beam group, where each of the products is obtained by multiplying a corrected open area by the predetermined function expression; a unit to calculate the correction coefficient that corrects the open area by using the predetermined function expression and the current value of the beam, for each beam; and a unit to calculate a current density of each of the multiple beams by the predetermined function expression.
Abstract:
An ion source includes arc chamber housing defining an arc chamber. The arc chamber housing has an extraction plate in a fixed position, and the extraction plate defines a plurality of extraction apertures. The ion source also includes a shutter assembly positioned outside of the arc chamber proximate the extraction plate. The shutter assembly is configured to block at least a portion of one of the plurality of extraction apertures during one time interval. The ion source combined with relative movement of a workpiece to be treated with an ion beam extracted from the ion source enables a two dimensional ion implantation pattern to be formed on the workpiece using only one ion source.
Abstract:
In an ion implanter, an ion current measurement device is disposed behind a mask co-planarly with respect to a surface of a target substrate as if said target substrate was positioned on a platen. The ion current measurement device is translated across the ion beam. The current of the ion beam directed through a plurality of apertures of the mask is measured using the ion current measurement device. In this manner, the position of the mask with respect to the ion beam as well as the condition of the mask may be determined based on the ion current profile measured by the ion current measurement device.
Abstract:
A system for joining at least two beams of charged particles that includes directing a first beam along a first axis into a field. A second beam is directed along a second axis into the field. The first and second beams are turned, by interaction between the field and the first and second beams, into a third beam directed along a third axis.
Abstract:
The invention relates to an apparatus for generating a plurality of charged particle beamlets and a charged particle beam lithography system comprising such an apparatus, said apparatus comprising: a charged particle source (1) for generating a diverging charged particle beam; a collimating means (4) for collimating said diverging charged particle beam, wherein said collimating means comprises at least one deflector array, said deflector array adapted for having a voltage applied to each deflector of said deflector array for deflecting a beamlet (8),
wherein at least one deflector of said deflector array is adapted to assert a deflecting effect proportional to its distance with respect the optical axis of the beam.
Abstract:
The invention relates to an apparatus for generating a plurality of charged particle beamlets, comprising a charged particle source for generating a diverging charged particle beam, a converging means for refracting said diverging charged particle beam and a lens array comprising a plurality of lenses, wherein said lens array is located between said charged particle source and said converging means. In this way, it is possible to reduce aberrations of the converging means.
Abstract:
A neutral particle generator is disclosed that includes a container which holds a material in at least a partial plasma state, for example a Deuterium plasma. In one form, a first cathode is positioned within the container and produces a first beam of neutral particles directed away from the first cathode. Optionally, a second cathode is also positioned within the container and produces a second beam of neutral particles directed away from the second cathode, and/or a target is also positioned within the container. In one form, the first cathode and the second cathode are linearly opposed so that the first beam interacts/collides with the second beam resulting in fusion reactions of at least some of the neutral particles, which thereby results in generation of emitted neutrons.