Abstract:
A carrier substrate and a method for manufacturing the carrier substrate are disclosed herein. The method includes the steps of: providing a core substrate; forming a build-up material layer on the core substrate; forming a via in the build-up material layer; forming a patterned photoresist layer on the build-up material layer covering a portion of the via and exposing an opening from uncovered portion of the via, and a wiring slot connected to the opening; and forming a metal-electroplated layer on the via and the wiring slot. In forming a trace according to the present invention, the metal-electroplated layer is formed as the trace and directly connected to the via, striding or not striding over the via. Additionally, in the carrier substrate structure, there is no need an annular ring to connect the trace to the via, and thus the wiring space is increased.
Abstract:
A method for fabricating an IC board without a ring structure is provided. In the method, after the completion of the core board (including the core through hole), the second pattern photoresist layer is used to mask over the first deposited metal layer, and a portion of the second deposited metal layer (this portion of the second deposited metal layer is to electrically couple to the conductive circuit of the core through hole). Later, the second deposited metal layer, the first deposited metal layer, the metal layer, and the substrate at the innermost layer which are not masked by the second pattern photoresist layer are removed. As a result, the substrate is exposed to form the ringless structure, and to couple a conductive line to the core board through hole.
Abstract:
An antenna carrier plate structure has a first circuit board and a second circuit board. The first circuit board has a first substrate and a conductive connector disposed in the first substrate. The conductive connector has two opposite connecting ends respectively protruding from two opposite surfaces of the first substrate. The second circuit board has a second substrate formed with a through hole, and a connecting plug is disposed in the through hole. One end of the connecting plug is formed with an engaging concave portion for engaging one end of the conductive connector of the first substrate. Therefore, each circuit board can be firmly fixed and electrically connected by engaging to form a multi-layer circuit board module, thereby avoiding joint tolerances during soldering and ensuring a correct connection of the joints.
Abstract:
A foil peeling apparatus adapted to a substrate having a foil thereon includes a foil peeling member, a connector and a controller. The foil peeling member has a foil peeling surface. The controller controls the connector to drive the peeling member to move along a path. The foil peeling surface of the peeling member in contact with, with an initial angle, the substrate, feeds toward the substrate for a first displacement, and then moves upwards and toward the substrate when the first feeding angle is decreased.
Abstract:
A winged coil structure and a method of manufacturing the same are disclosed. The winged coil structure includes an upper flexible plate, at least one upper magnetic induction coil, at least one upper connection pad, a lower flexible plate, at least one lower magnetic induction coil, at least one lower connection pad, at least one gold finger, a dielectric layer and at least one connection plug. The connection plug connects the upper connection pad and the lower connection pad through thermal pressing such that the gold finger, the upper magnetic induction coil, the upper connection pad, the lower connection pad, the connection plug, the lower connection pad and the lower magnetic induction coil are electrically connected. The upper flexible plate is provided with notched lines to be easily bent without damage to the upper and lower magnetic induction coils. Thus, a bendable feature for magnetic induction coils is provided.
Abstract:
A winged coil structure and a method of manufacturing the same are disclosed. The winged coil structure includes an upper flexible plate, at least one upper magnetic induction coil, at least one upper connection pad, a lower flexible plate, at least one lower magnetic induction coil, at least one lower connection pad, at least one gold finger, a dielectric layer and at least one connection plug. The connection plug connects the upper connection pad and the lower connection pad through thermal pressing such that the gold finger, the upper magnetic induction coil, the upper connection pad, the lower connection pad, the connection plug, the lower connection pad and the lower magnetic induction coil are electrically connected. The upper flexible plate is provided with notched lines to be easily bent without damage to the upper and lower magnetic induction coils. Thus, a bendable feature for magnetic induction coils is provided.
Abstract:
Disclosed is a method for manufacturing a circuit board, including preparing a substrate having a resin layer and a stop layer, forming at least one conduction hole penetrating the resin layer and stopping at the stop layer, forming a first metal layer through a sputtering process, forming a second metal layer on the first metal layer through a chemical plating process, forming a third metal layer having a circuit pattern, exposing part of the second metal layer and filling up the conduction hole through an electroplating process, and etching the second metal layer and the first metal layer under the second metal layer to expose the resin layer under the first metal layer. Since the first metal layer provides excellent surface properties, the second and third metal layers are well fixed and stable. The etched circuit pattern has a line width/pitch less than 10 μm for fine line width/pitch.
Abstract:
Disclosed is a magnetic excitation coil structure including a magnetic coil sheet formed of a thin film and rolled as a cylindrical body with a hollow hole, and an insulation layer covering the outer surface of the cylindrical body formed by the magnetic coil sheet for protection. The magnetic coil sheet includes a flexible substrate, a dielectric layer attached to the flexible substrate, and a plurality of patterned circuit layers embedded in the flexible substrate and in contact with the dielectric layer. Each patterned circuit layer is separate, and the upper surfaces of the patterned circuit layers and the upper surface of the flexible substrate form a co-plane. The magnetic coil structure provides an electrical function of coil, which is enhanced by the patterned circuit layer due to its high aspect ratio of the electrical circuit, thereby greatly increasing the whole magnetic flux and electromagnetic effect.
Abstract:
A carrier board structure includes at least one upper magnetic coil, at least one lower magnetic coil, a flexible board, a dielectric layer, at least one connection pad and at least one gold finger. The flexible board has a middle region having a middle hole, and two side regions thinner than the middle region. A groove used as a fold line is provided on the lower surface of each side region bordering on the middle region. The upper and lower magnetic coils are configured in the flexible board and separated by the dielectric layer. The gold fingers are provided on the two side regions and connected to the upper magnetic coils. The upper and lower magnetic coils are around the middle hole and connected by the connection pads. The fold lines help the two side regions to fold without damage to the upper and lower magnetic coils.
Abstract:
A double sided board with buried element and a method for manufacturing the same are disclosed. At least one buried element is fixed on a dielectric layer and embedded in an insulation layer. First and second electrical circuits are formed on upper and lower surfaces of the insulation layer, respectively. At least one through-hole is formed in the insulation layer and filled with a conductive layer to electrically connect the first and the second electrical circuits. The dielectric layer beneath the buried element and the insulation layer above the buried element are provided with at least one opening, respectively, which is filled with the conductive layer, thereby connecting the conductive layer and external circuits or electrical elements. Additionally, the first and second electrical circuits are covered with first and second solder masks, respectively, so as to avoid environmental effect and improve preciseness of the circuits.