Abstract:
An integrated package of at least one environmental sensor and at least one MEMS acoustic sensor is disclosed. The package contains a shared port that exposes both sensors to the environment, wherein the environmental sensor measures characteristics of the environment and the acoustic sensor measures sound waves. The port exposes the environmental sensor to an air flow and the acoustic sensor to sound waves. An example of the acoustic sensor is a microphone and an example of the environmental sensor is a humidity sensor.
Abstract:
A process for fabricating multiple microfluidic device chips. The process includes fabricating multiple micromachined tubes in a semiconductor device wafer. The tubes are fabricated so that each tube has an internal fluidic passage and an inlet and outlet thereto defined in a surface of the device wafer. The device wafer is then bonded to a glass wafer to form a device wafer stack, and so that through-holes in the glass wafer are individually fluidically coupled with the inlets and outlets of the tubes. The glass wafer is then bonded to a metallic wafer to form a package wafer stack, so that through-holes in the metallic wafer are individually fluidically coupled with the through-holes of the glass wafer. Multiple microfluidic device chips are then singulated from the package wafer stack. Each device chip has a continuous flow path for a fluid therethrough that is preferably free of organic materials.
Abstract:
An infrared sensor comprises a temperature sensor (4) at a top side of a substrate (1) and an infrared filter element (19) located at a bottom side of the substrate (1). A lead frame is placed above the substrate (1) and a housing is cast having a window (42) extending to the filter element (19). A recess (27) in the lead frame (25) provides a large distance between the temperature sensor (4) and the metal of the lead frame (25), thereby reducing thermal conductance. This type of device is easy to manufacture.
Abstract:
A MEMS device includes a P-N device formed on a silicon pin, which is connected to a silicon sub-assembly, and where the P-N device is formed on a silicon substrate that is used to make the silicon pin before it is embedded into a first glass wafer. In one embodiment, forming the P-N device includes selectively diffusing an impurity into the silicon pin and configuring the P-N device to operate as a temperature sensor.
Abstract:
The invention relates to a method for producing a semiconductor component (100; ...; 700), particularly a multilayer semiconductor component, preferably a micromechanical component such as, in particular, a heat-conducting sensor, which has a semiconductor substrate (101), particularly made of silicon, and a sensor area (404). The aim of the invention is to economically produce a thermal insulation between the semiconductor substrate (101) and the sensor area (404). To this end, a porous layer (104; 501) is provided in the semiconductor component (100; ...; 700).
Abstract:
A thermal displacement element comprises a substrate, and a supported member supported on the substrate. The supported member includes first and second displacement portions, a heat separating portion exhibiting a high thermal resistance and a radiation absorbing portion receiving the radiation and converting it into heat. Each of the first and second displacement portions has at least two layers of different materials having different expansion coefficients and stacked on each other. The first displacement portion is mechanically continuous to the substrate without through the heat separating portion. The radiation absorbing portion and the second displacement portion are mechanically continuous to the substrate through the heat separating portion and the first displacement portion. The second displacement portion is thermally connected to the radiation absorbing portion. A radiation detecting device comprises a thermal displacement element and a displacement reading member fixed to the second displacement portion of the thermal displacement element and used for obtaining a predetermined change corresponding to a displacement in the second displacement portion.
Abstract:
This invention provides a front-side silicon micromachining process for the fabrication of suspended Porous Silicon membranes in the form of bridges or cantilevers and of thermal sensor devices employing these membranes. The fabrication of the suspended Porous Silicon membranes comprises the following steps: (a) formation of a Porous Silicon layer (2) in, at least one, predefined area of a Silicon substrate (1), (b) definition of etch windows (5) around or inside said Porous Silicon layer (2) using standard photolithography and (c) selective etching of the Silicon substrate (1), underneath the Porous Silicon layer (2), by using dry etching techniques to provide release of the Porous Silicon membrane and to form a cavity (6) under the said Porous Silicon layer. Furthermore, the present invention provides a method for the fabrication of thermal sensors based on Porous Silicon membranes with minimal thermal losses, since the proposed methodology combines the advantages that result from the low thermal conductivity of Porous Silicon and the use of suspended membranes. Moreover, the front-side micromachining process proposed in the present invention simplifies the fabrication process. Various types of thermal sensor devices, such as calorimetric-type gas sensors, conductometric-type gas sensors and thermal conductivity sensors are described utilizing the proposed methodology.
Abstract:
A thermal displacement element comprises a substrate, and a supported member supported on the substrate. The supported member includes first and second displacement portions, a heat separating portion exhibiting a high thermal resistance and a radiation absorbing portion receiving the radiation and converting it into heat. Each of the first and second displacement portions has at least two layers of different materials having different expansion coefficients and stacked on each other. The first displacement portion is mechanically continuous to the substrate without through the heat separating portion. The radiation absorbing portion and the second displacement portion are mechanically continuous to the substrate through the heat separating portion and the first displacement portion. The second displacement portion is thermally connected to the radiation absorbing portion. A radiation detecting device comprises a thermal displacement element and a displacement reading member fixed to the second displacement portion of the thermal displacement element and used for obtaining a predetermined change corresponding to a displacement in the second displacement portion.
Abstract:
A system includes an array of chemical, pressure, and temperature sensors, and a temporal airflow modulator configured to provide sniffed vapors in a temporally-modulated sequence through a plurality of different air paths across multiple sensor locations.