Abstract:
Ein Verfahren zum Ausbilden einer Kavität in einem Siliziumsubstrat, wobei eine Oberfläche des Siliziumsubstrats einen Verkippwinkel gegen eine erste Ebene des Siliziumsubstrats aufweist und wobei die erste Ebene eine {111}-Ebene des Siliziumsubstrats ist und Anordnen einer Ätzmaske auf der Oberfläche des Siliziumsubstrats. Die Ätzmaske weist eine erste Vorhaltestruktur auf, die in die Maskenöffnung hineinragt. Die Ätzmaske weist weiterhin einen ersten Ätzansatzbereich auf. Alle weiteren Kanten der Maskenöffnung außerhalb des ersten Ätzansatzbereichs werden im Wesentlichen parallel zu {111}-Ebenen des Siliziumsubstrats angeordnet. Als einen weiteren Schritt umfasst das Verfahren ein anisotropes Ätzen des Siliziumsubstrats während einer festgelegten Ätzdauer. Dabei ist eine Ätzrate in die -Richtungen des Siliziumsubstrats niedriger als in andere Raumrichtungen und die erste Vorhaltestruktur wird ausgehend von dem ersten Ätzansatzbereich in eine erste Unterätzrichtung unterätzt. Die Ätzdauer ist so festgelegt, dass sich durch das anisotrope Ätzen eine Kavität in dem Siliziumsubstrat ausbildet, die eine Öffnung an der Oberfläche des Siliziumsubstrats aufweist. Die Ätzdauer so festgelegt, dass nach Ablauf der Ätzdauer die erste Ebene des Siliziumsubstrats im Wesentlichen freigelegt ist und eine Bodenfläche der Kavität ausbildet.
Abstract:
A capacitive micromachined ultrasonic transducer (CMUT) device 100 includes at least one CMUT cell 100a including a first substrate 101 of a single crystal material having a top side including a patterned dielectric layer thereon including a thick 106 and a thin 107 dielectric region, and a through- substrate via (TSV) 111 extending a full thickness of the first substrate. The TSV is formed of the single crystal material, is electrically isolated by isolation regions 131 in the single crystal material, and is positioned under a top side contact area 102a of the first substrate. A membrane layer 120b is bonded to the thick dielectric region and over the thin dielectric region to provide a movable membrane over a microelectromechanical system (MEMS) cavity 114. A metal layer 161 is over the top side substrate contact area and over the movable membrane including coupling of the top side substrate contact area to the movable membrane.
Abstract:
A packaged capacitive MEMS sensor device 100 includes at least one capacitive MEMS sensor element with at least one capacitive MEMS sensor cell 100a including a first substrate 101 having a thick 106 and a thin 107 dielectric region. A second substrate with a membrane layer 120 is bonded to the thick dielectric region and over the thin dielectric region to provide a MEMS cavity 114. The membrane layer provides a fixed electrode 120a and a released MEMS electrode 120b over the MEMS cavity. A first through-substrate via (TSV) 111 extends through a top side of the MEMS electrode and a second TSV 112 through a top side of the fixedelectrode. A metal cap 132 is on top of the first TSV and second TSV. A third substrate 140 including an inner cavity 144 and outer protruding portions 146 framing the inner cavity is bonded to the thick dielectric regions. The third substrate together with the first substrate seals the MEMS electrode.
Abstract:
Stress relief structures and methods that can be applied to MEMS sensors requiring a hermetic seal and that can be simply manufactured are disclosed. The system includes a sensor having a first surface and a second surface, the second surface being disposed away from the first surface, the second surface also being disposed away from a package surface and located between the first surface and the package surface, a number of support members, each support member extending from the second surface to the package surface, the support members being disposed on and operatively connected to only a portion of the second surface. The support member are configured to reduce stress produced by package-sensor interaction.
Abstract:
A pressure sensor die assembly comprises a base substrate having a first surface, a stop structure on the first surface, and a diaphragm structure coupled to the first surface. The diaphragm structure comprises a first side with a cavity section including a first cavity and a second cavity surrounding the first cavity; a pressure sensing diaphragm portion having a first thickness and defined by the first cavity; and an over pressure diaphragm portion having a second thickness and defined by the second cavity, the second thickness greater than the first thickness. When an over pressure is applied, at least some area of the pressure sensing diaphragm portion is deflected and supported by the stop structure. As over pressure is increased, the over pressure diaphragm portion deflects and engages with the first surface such that additional area of the pressure sensing diaphragm portion is deflected and supported by the stop structure.
Abstract:
The present invention relates to the field of sensor manufacturing technology, particularly disloses a method for manufacturing a micro-sensor body, compriseing the steps of S1: applying a wet colloidal material on a substrate to form a colloidal layer, and covering a layer of one-dimensional nanowire film on the surface of the colloidal layer to form a sensor embryo; S2: drying the colloidal layer of the sensor embryo to an extent that the colloidal layer cracks into a plurality of colloidal islands, a portion of the one-dimensional nanowire film contracting into a contraction diaphragm adhered to the surface of the colloidal islands while the other portion of the one-dimensional nanowire film being stretched into a connection structure connected between the adjacent contraction diaphragms. By the method for manufacturing a micro-sensor body of the present invention, the contraction diaphragms and connection structures formed by stretching the one-dimensional nanowire film are connected stably, which enhances the stability of the sensor devices; and the cracking manner renders it easy to obtain a large-scale of sensor bodies with connection structure arrays in stable suspension.
Abstract:
The invention relates to a microstructured substrate comprising a plurality of at least one elementary microstructure (3), and to the method for producing said microstructured substrate. Said at least one elementary microstructure (3) has a long shape and opposing longitudinal lower (3a) and upper (3b) ends, the lower end (3a) being connected to the substrate, and also comprises an open cavity (5) on the upper end (3b) thereof, said microstructured substrate comprising alumina on the surface thereof. The invention also relates to an electrical storage device, more specifically an all-solid battery, comprising the microstructured substrate according to the invention.