Abstract:
The present invention provides an electron spectroscopy apparatus (12) comprising a high energy particle source (12) for irradiating a sample, an electron detector system (16) (e.g. including a delay line detector) for detecting electrons emitted from the sample and an ion gun (8) for delivering a polycyclic aromatic hydrocarbon (PAH) ion beam to the sample, wherein the ion gun comprises a polycyclic aromatic hydrocarbon ion source, for example comprising coronene. In an embodiment, the PAH is located in a heated chamber (22) and vaporised to produce gas phase PAH. The gas phase PAH molecules are then ionised by electron impact, extracted from the ion source via an extraction field and focussed using ion optics. The PAH ion beam can be used for surface cleaning and depth analysis.
Abstract:
Techniques for commensurate cusp-field for effective ion beam neutralization are disclosed. In one particular exemplary embodiment, the techniques may be realized as a charged particle injection system comprising a beamguide configured to transport an ion beam through a dipole field. The charged particle injection system may also comprise a first array of magnets and a second array of magnets configured to generate a multi-cusp magnetic field, positioned along at least a portion of an ion beam path, the first array of magnets being on a first side of the ion beam path and the second array of magnets being on a second side of the ion beam path. The charged particle injection system may further comprise a charged particle source having one or more apertures configured to inject charged particles into the ion beam path. The charged particle injection system may furthermore align the one or more apertures with at least one of the first array of magnets and the second array of magnets to align the injected charged particles from the charged particle source with one or more magnetic regions for an effective charged particle diffusion into the ion beam path.
Abstract:
An ion beam energy monitor system and method thereof. A physical field generator generates a physical field in a direction not parallel to an ion beam, refracting the ion beam, and a receiving device located on the path of the refracted ion beam receives the ion beam and calculates the energy thereof according to a collision distribution of ions of the ion beam. The output energy of the ion beam is thus being well adjusted.
Abstract:
A bio electron microscope and an observation method which can observe a bio specimen by low damage and high contrast to perform high-accuracy image analysis, and conduct high-throughput specimen preparation. 1) A specimen is observed at an accelerating voltage 1.2 to 4.2 times a critical electron accelerating voltage possible to transmit a specimen obtained under predetermined conditions. 2) An electron energy filter of small and simplified construction is provided between the specimen and an electron detector for imaging by the electron beam in a specified energy region of the electron beams transmitting the specimen. 3) Similarity between an observed image such as virus or protein in the specimen and a reference image such as known virus or protein is subjected to quantitative analysis by image processing. 4) A preparation protocol of the bio specimen is made into a chip using an MEMS technique, which is then mounted on a specimen stage part of an electron microscope to conduct specimen introduction, preparation and transfer onto a specimen holder.
Abstract:
A pre-acceleration or post-acceleration ion implantation system includes an AC (alternating current) power source supplying power in tandem with a DC (direct current) power source. The combined AC and DC power may be supplied, in alternative embodiments, to an ion accelerator and/or an ion extractor of the system.
Abstract:
An analysis device, possibly having an electrostatic and/or magnetic lens, analyzes the energy of charged particles and has an opposing field grid device to which a voltage is applied in such a way that a portion of the charged particles is reflected by the opposing field grid device. Another portion of the charged particles passes through the opposing field grid device and is detected by a detector. The opposing field grid device has a curvature. A center of curvature is an intersection point of an optical axis with the opposing field grid device. The curvature has a radius of curvature which is given by the section between the center of curvature and a starting point on the optical axis. The opposing field grid device is curved in the direction of the starting point as viewed from the center of curvature and/or is arranged to be displaceable along the optical axis.
Abstract:
SMS probe imaging systems, methods of use thereof, and the like are disclosed. Embodiments of the present disclosure can use direct interrogation of objects (e.g., cells or tissue) within a small pool/droplet of liquid, optional thermal, mechanical, electrical, optical and chemical manipulation, followed immediately by liquid sampling, optional sample conditioning, and soft ionization of biomolecules.
Abstract:
A method for treating a substrate surface uses Neutral Beam irradiation derived from a gas-cluster ion-beam and articles produced thereby including lithography photomask substrates. One embodiment provides a method of treating a surface of a substrate that contains one or more embedded particles or contains sub-surface damage, comprising the steps of: providing a reduced pressure chamber; forming a gas-cluster ion-beam comprising gas-cluster ions within the reduced pressure chamber; accelerating the gas-cluster ions to form an accelerated gas-cluster ion-beam along a beam path within the reduced pressure chamber; promoting fragmentation and/or dissociation of at least a portion of the accelerated gas-cluster ions along the beam path; removing charged particles from the beam path to form an accelerated neutral beam along the beam path in the reduced pressure chamber; holding the surface in the beam path; and treating at least a portion of the surface of the substrate by irradiation.
Abstract:
A sequential radial mirror analyser (RMA) (100) for facilitating rotationally symmetric detection of charged particles caused by a charged beam incident on a specimen (112) is disclosed. The RMA comprises a 0V equipotential exit grid (116), and a plurality of electrodes (119, 120a, 120b, 120c) electrically configured to generate corresponding electrostatic fields for deflecting at least some of the charged particles of a single energy level to exit through the exit grid (116) to form a second-order focal point on a detector (106). The second-order focal point is associated with the single energy level, and the detector (106) is disposed external to the corresponding electrostatic fields. A related method is also disclosed.
Abstract:
A detector system for a transmission electron microscope includes a first detector for recording a pattern and a second detector for recording a position of a feature of the pattern. The second detector is preferably a position sensitive detector that provides accurate, rapid position information that can be used as feedback to stabilize the position of the pattern on the first detector. In one embodiment, the first detector detects an electron energy loss electron spectrum, and the second detector, positioned behind the first detector and detecting electrons that pass through the first detector, detects the position of the zero-loss peak and adjusts the electron path to stabilize the position of the spectrum on the first detector.