Abstract:
A charged particle beam source, such as for use in an electron microscope, can include an electrically conductive support member coupled to a base, a mounting member coupled to the support member and defining a bore, and an emitter member received in the bore and retained by a fixative material layer flowed around the emitter member in the bore.
Abstract:
A neutral particle generator is disclosed that includes a container which holds a material in at least a partial plasma state, for example a Deuterium plasma. In one form, a first cathode is positioned within the container and produces a first beam of neutral particles directed away from the first cathode. Optionally, a second cathode is also positioned within the container and produces a second beam of neutral particles directed away from the second cathode, and/or a target is also positioned within the container. In one form, the first cathode and the second cathode are linearly opposed so that the first beam interacts/collides with the second beam resulting in fusion reactions of at least some of the neutral particles, which thereby results in generation of emitted neutrons.
Abstract:
A charged particle beam source that may include an emitter that has a tip for emitting charged particles; a socket; electrodes; a filament that is connected to the electrodes and to the emitter; electrodes for providing electrical signals to the filament; a support element that is connected to the emitter; and a support structure that comprises one or more interfaces for contacting only a part of the support element while supporting the support element.
Abstract:
A cathode for an X-ray tube, an X-ray tube, a system for X-ray imaging, and a method for an assembly of a cathode for an X-ray tube include a filament, a support structure, a body structure, and a filament frame structure. The filament is provided to emit electrons towards an anode in an electron emitting direction, and the filament at least partially includes a helical structure. Further, the filament is held by the support structure which is fixedly connected to the body structure. The filament frame structure is provided for electron-optical focusing of the emitted electrons, and the filament frame structure is provided adjacent to the outer boundaries of the filament. The filament frame structure includes frame surface portions arranged transverse to the emitting direction, and the filament frame structure is held by the support structure.
Abstract:
In some embodiments, a light source including a first electrode that includes a projection and a depression, a second electrode including a projection and a depression, an insulating layer disposed between the first electrode and the second electrode, and a light-emitting element straddling the insulating layer and disposed on the projection of the first electrode and on the projection of the second electrode. In other embodiments, a lighting device including a base that includes a first terminal and a second terminal that are configured to be electrically connected to the light source to supply current to the light-emitting element. In some embodiments, the lighting device is a lighting bulb, and in other embodiments, the lighting device is tube-shaped.
Abstract:
Two U-shaped inner tubes, each of which have a straight leg which is hermcally sealed about a preheatable electrode, are sealed into the upper, oval reception section of a preshaped flare. The seal also includes the exhaust tube and the lead-in wire pairs supporting the preheatable electrodes and is carried out as a press seal in one single working step. The other legs of the U-shaped inner tubes remain open. The lower, outwardly facing rim of the preshaped flare which is concentric with the longitudinal lamp axis is sealed to an outer envelope whose neck drops off during this sealing process and which surrounds the U-shaped inner tubes and contains a gas and/or metal vapor filling. The inner tubes are preferably coated with a three-line phosphor, and the outer envelope is provided with a light diffusing coating. The single-ended low-pressure discharge lamp may largely be manufactured on conventional machines and may be directly used in place of an incandescent lamp as a compact lamp of low electrical wattage when a starting and operating circuitry is incorporated in a conventional type of base used for incandescent lamps. Also disclosed are methods of manufacture of such a lamp.