Abstract:
PURPOSE: A fine patterning method of an inkjet by forming a guide line of a self assembled monolayer is provided to prevent a solid from spreading around a pattern by forming a self assembled monolayer as a guide line in forming the pattern. CONSTITUTION: In a fine patterning method of an inkjet by forming a guide line of a self assembled monolayer, a guide line is formed on a substrate with an SAM layer is formed(ST1). An ink jet pattern is formed between guide-lines(ST2). The SAM layer has different selectivity since the SAM layer has hydrophilic property, and hydrophobicity against the ink of the inkjet.
Abstract:
PURPOSE: A wearable apparatus equipped with an energy collection type power source is provided to supply the power to the wearable apparatus by oneself without a separate external device by using a solar battery. CONSTITUTION: A wearable apparatus equipped with an energy collection type power source includes a flexible substrate, a display unit(200), a solar cell unit(400) and a storage unit(500). The display unit is formed at an upper side of the flexible substrate. The solar cell unit is formed at a lower side of the flexible substrate. The storage unit stores the power generated through the solar cell unit, and supplies the power when driving the display unit.
Abstract:
A resonance complex utilizing the wire of a resonant tunneling transistor and a resonance complex manufacturing method are provided to be easily usable in the various low power communications systems. A resonance complex comprises a first terminal(110), a second terminal(120), a wiring unit(130), a third terminal(150), and a potential barrier unit(140). The second terminal is faced with the first terminal. The wiring unit connects the first terminal and the second terminal interval. The wiring unit is resonated to the third terminal. The potential barrier unit is formed on the wiring unit. The potential barrier unit provides the negative resistance component.
Abstract:
A manufacturing method of a nonvolatile magnetoresistive memory device using a nano imprinting lithography is provided to reduce a production cost by using a nano imprinting lithography technique. A first interlayer insulation film(110) is formed on a front of a substrate. A source line(111) is formed on a top of the first interlayer insulation film. A second interlayer insulation film(112) is formed on a front of the substrate. A digit line(113) is formed on a top of the second interlayer insulation film. A third interlayer insulation film(114) is formed on a front of a film including the digit line. A bottom electrode(115) is contacted with a third plug(108C), and is formed on a top of the third interlayer insulation film. A pinning layer(116) and a fixed layer(117) are formed on a top of the bottom electrode. A magnetic tunnel junction cell(121) is formed on a top of the bottom electrode. A bit line(123) is contacted with a top surface of the magnetic tunnel junction cell.
Abstract:
A non-volatile memory device producing method is provided to form the minute pattern on the semiconductor substrate by transferring the fine pattern on the semiconductor substrate through the nano imprinting technology. A resist layer(320) is formed on a substrate(310). A stamp(330) is contacted with the resist layer and the unevenness pattern of stamp is transferred onto the resist layer. The memory layer is formed on the resist layer on the substrate. The resist layer positioned between the memory layers is removed. The ion injection process is performed to the substrate and the source and drain regions are formed between the memory layers.
Abstract:
오일의 전산가 측정 장치, 오일의 전산가 측정을 이용한 수명 산출 장치 및 오일의 전산가 및 오일센서 측정 방법이 개시된다. 본 발명은 컨덕턴스 변화량과 해당하는 오일의 전산가 및 물성 측정치를 매칭시킨 전산가 테이블을 저장하는 전산가 테이블 저장부, 윤활유 및 절연유를 포함하는 상기 오일에서 컨덕턴스를 측정하는 컨덕턴스 측정 센서부, 및 상기 측정된 컨덕턴스에 따른 전산가 및 물성 측정치를 상기 전산가 테이블에서 검색하여 상기 오일의 전산가 정보를 출력하는 전산가 산출부를 포함하고, 상기 컨덕턴스 측정 센서부는 소정의 면적으로 형성된 기판, 상기 오일의 컨덕턴스를 측정하기 위하여 상기 기판 상면으로 탄소나노튜브를 스크린 프린팅하여 소결시킨 판 형태의 컨덕턴스 감지막, 및 상기 감지막 상면에 형성하거나 상기 감지막 상면에서 기판 상면으로 연장되게 형성하여 외부 전원에 연결되도록 진공증착 방법을 이용하여 패터닝한 상부전극을 포함하는 것을 특징으로 한다. 본 발명에 의하면, 고감도의 컨덕턴스 측정 센서를 이용하여 측정 정확성을 높이고, 윤활유와 절연유에 모두 적용이 가능하며, 전산가 측정 장비의 크기를 줄이고 구조를 단순화시킬 수 있으며, 전산가 측정을 통해 오일의 수명을 정확히 판단할 수 있어 오일을 사용하는 장비를 최적의 상태로 관리 및 유지할 수 있는 편의성을 제공한다. 탄소나노튜브, 기판, 감지막, 오일, 센서
Abstract:
탄소나노튜브 화학센서가 제공된다. 본 발명에 따른 탄소나노튜브 화학센서는 유리, 실리콘 또는 세라믹 기판 상에 적층된 절연층; 상기 절연층의 상부에 상호 대향하도록 적층되어 있는 적어도 한 쌍의 전극; 및 상기 한 쌍의 전극이 이격되어 있는 부위에 다수의 탄소나노튜브가 분산되어 있는 감지부로 이루어지며, 상기 다수의 탄소나노튜브들 및 상기 한 쌍의 전극감지부와 상기 감지부의 탄소나노튜브 말단은 전기적으로 통전되어 있는 것을 특징으로 한다. 본 발명에 따른 탄소나노튜브 화학센서는 간단한 구조를 가짐에도 미세한 pH 변화 및 극소량의 물질을 우수한 감도로 검출해 낼 수 있으며, 제조원가를 절감하여 양산성을 향상시킬 수 있다.
Abstract:
본 발명은 도광판 제조용 금형 제조방법에 관한 것으로, 도광판의 상부 표면에 미세 프리즘 요철을 형성하여 휘도를 상향시켜며, 도광판의 하부 표면에 산란 및 확산의 기능을 가지는 홀로그램 패턴을 형성하여 균일 면광원화함으로써 보다 높은 휘도를 얻기 위한 프리즘과 홀로그램 패턴을 갖는 일체형 도광판 제조용 금형 제조방법에 관한 것이다. 이렇게, 도광판을 제조할 경우 도광판의 측면에서 투과되는 광 휘도를 크게 향상시키며, 도광판 상면의 출광원도 균일하게 상향 일직선으로 방출하며 고휘도의 효과가 있다. 도광판, 프리즘, 홀로그램, 금형
Abstract:
A flexible organic light emitting diode using a transparent organic electrode, a display panel using the same, and a method for manufacturing the same are provided to manufacture a diode having enhanced electron injection efficiency. A flexible organic light emitting diode using a transparent organic electrode(41) includes a flexible substrate(40), the transparent organic electrode, a metallic electrode(47), and an organic light emitting layer(48). The flexible substrate is made of transparent plastic. A pattern is formed in the top of the flexible substrate by a printing method. Electrons are injected into the transparent organic electrode. Holes are injected into the metallic electrode. The organic light emitting layer is deposited in the top of the transparent organic electrode and is positioned in the bottom of the metallic electrode. A polaron exciton is formed by the contact of the electrons and the holes.
Abstract:
A manufacturing method of carbon nanotube thick membrane by controlling calcination conditions while excluding surface treatment process and a field emission display using the method are provided to increase field emission and to complete carbon nanotube sharply. A manufacturing method of carbon nanotube thick membrane comprises steps of: (a) preparing carbon nanotube paste containing carbon nanotube, organic binder, organic solvent and inorganic powder or filler of low-melting point metal powder; (b) forming thick membrane on the electrode of the substrate by screen-printing or inkjet-printing the carbon nanotube; (c) after subjecting the substrate inside the heat-treatment equipment, heat-treating the substrate for removing organic solvent; and (d) furnishing air and inert gas in the ratio from 2:8 to 8:2 with the substrate which is out of organic solvent, and calcinating the substrate at the temperature of 350-500deg.C. In step (a), the organic binder is selected from a group consisting of ethylcellulose, acrylic resin and mixture thereof, the organic solvent is selected from a group consisting of terpineol, butyl carbitol acetate and mixture thereof, and the filler is selected from a group consisting of glass frit, indium tin oxide, indium dioxide, tin dioxide, zinc oxide, sliver, lead, zinc, tin and magnesium. The substrate in step (b) is glass or ceramic, and the electrode is selected from a group consisting of tin oxide, gold, silver, copper and aluminium. The temperature for removing the organic solvent in step (c) is 100-150deg.C. The inert gas in step (d) is nitrogen, and the ratio of air to the inert gas is 5:5 by volume. The calcination temperature in step (d) is 400deg.C, and the air and inert gas is supplied in the amount of 10-20LPM by using flow-controlling equipment. The carbon nanotube paste optionally comprises a catalyst selected from a group consisting of Pt, Co, Mn, Zn, Ti and Ni in the amount of 0.1-3% by weight.