POLYSILICON DEPOSITION AND ANNEAL PROCESS ENABLING THICK POLYSILICON FILMS FOR MEMS APPLICATIONS
    82.
    发明申请
    POLYSILICON DEPOSITION AND ANNEAL PROCESS ENABLING THICK POLYSILICON FILMS FOR MEMS APPLICATIONS 审中-公开
    多晶硅沉积和退火工艺使MEMS应用的薄膜多晶硅薄膜

    公开(公告)号:WO2008124595A2

    公开(公告)日:2008-10-16

    申请号:PCT/US2008059415

    申请日:2008-04-04

    Abstract: A method of forming a thick polysilicon layer for a MEMS inertial sensor includes forming a first amorphous polysilicon film on a substrate in an elevated temperature environment for a period of time such that a portion of the amorphous polysilicon film undergoes crystallization and grain growth at least near the substrate. The method also includes forming an oxide layer on the first amorphous polysilicon film, annealing the first amorphous polysilicon film in an environment of about 1100°C or greater to produce a crystalline film, and removing the oxide layer. Lastly, the method includes forming a second amorphous polysilicon film on a surface of the crystalline polysilicon film in an elevated temperature environment for a period of time such that a portion of the second amorphous polysilicon film undergoes crystallization and grain growth at least near the surface of the crystalline polysilicon film.

    Abstract translation: 形成用于MEMS惯性传感器的厚多晶硅层的方法包括在高温环境中在衬底上形成第一非晶多晶硅膜一段时间,使得非晶多晶硅膜的一部分经历结晶并且晶粒生长至少接近 底物。 该方法还包括在第一非晶多晶硅膜上形成氧化物层,在约1100℃或更高的环境中退火第一非晶多晶硅膜以产生结晶膜,并除去氧化物层。 最后,该方法包括在高温环境下在晶体多晶硅膜的表面上形成第二非晶多晶硅膜一段时间,使得第二非晶多晶硅膜的一部分在至少在表面附近发生结晶和晶粒生长 晶体多晶硅膜。

    DISPOSITIF MICROMECANIQUE COMPORTANT UNE POUTRE MOBILE
    83.
    发明申请
    DISPOSITIF MICROMECANIQUE COMPORTANT UNE POUTRE MOBILE 审中-公开
    包含移动光束的微机电装置

    公开(公告)号:WO2006084977A1

    公开(公告)日:2006-08-17

    申请号:PCT/FR2006/000246

    申请日:2006-02-02

    CPC classification number: B81C1/00666 B81B2201/016 B81C2201/0167

    Abstract: Le dispositif micromécanique comporte une poutre (1) mobile rattachée par ses deux extrémités (2) à un cadre (3) rigide comportant deux bras (4) ayant chacun deux extrémités (5). Les extrémités (5) d'un bras (4) sont respectivement solidaires des deux extrémités (2) de la poutre (1) mobile. Chaque bras (4) a une partie médiane (6) disposée entre les deux extrémités (5) du bras (4) correspondant. Une face arrière de la partie médiane (6) de chaque bras (4) est rattachée à un support (10) de base. Le cadre (3) comporte au moins un élément (11) sous contrainte permettant d'ajuster l'état de contrainte de la poutre. L'élément (11 ) sous contrainte peut être centré entre la face avant et la face arrière du bras (4) correspondant. Le cadre (3) peut comporter des paires d'éléments (11 ) sous contrainte avant et arrière disposés, l'un en regard de l'autre, respectivement à la face avant et à la face arrière des bras (4).

    Abstract translation: 本发明涉及一种包括移动梁(1)的微机械装置,所述梁由其两端(2)连接到设置有两个臂(4)的刚性框架(3),每个臂具有两个端部(5)。 臂(4)的端部(5)分别固定在移动梁(1)的两端(2)上。 每个臂(4)具有布置在相应臂(4)的两端(5)之间的中心部分(6)。 每个臂(4)的中心部分(6)的后表面附接到基座支撑件(10)。 框架(3)包括用于调节梁的应力状态的至少一个应力元件(11)。 应力元件(11)可以在相应臂(4)的前表面和后表面之间居中。 框架(3)可以包括成对的前和后应力元件(11),它们分别布置在臂(4)的前表面和后表面上,使得它们彼此面对。

    STRESS CONTROL OF SEMICONDUCTOR MICROSTRUCTURES FOR THIN FILM GROWTH
    84.
    发明申请
    STRESS CONTROL OF SEMICONDUCTOR MICROSTRUCTURES FOR THIN FILM GROWTH 审中-公开
    薄膜生长半导体微结构的应力控制

    公开(公告)号:WO03045837A2

    公开(公告)日:2003-06-05

    申请号:PCT/US0237503

    申请日:2002-11-22

    Abstract: A suspended semiconductor film is anchored to a substrate at at least two opposed anchor positions, and film segments are deposited on the semiconductor film adjacent to one or more of the anchor positions to apply either tensile or compressive stress to the semiconductor film between the film segments. A crystalline silicon film may be anchored to the substrate and have tensile stress applied thereto to reduce the lattice mismatch between the silicon and a silicon-germanium layer deposited onto the silicon film. By controlling the level of stress in the silicon film, the size, density and distribution of quantum dots formed in a high germanium content silicon-germanium film deposited on the silicon film can be controlled.

    Abstract translation: 悬浮的半导体膜在至少两个相对的锚定位置处锚定到基底上,并且将薄膜段沉积在与一个或多个锚定位置相邻的半导体膜上,以将拉伸或压缩应力施加到膜段之间的半导体膜 。 结晶硅膜可以锚定到基底并且施加拉伸应力以减小硅和沉积在硅膜上的硅 - 锗层之间的晶格失配。 通过控制硅膜中的应力水平,可以控制沉积在硅膜上的高锗含量硅 - 锗膜中形成的量子点的尺寸,密度和分布。

    MICROMACHINED ELECTROSTATIC ACTUATOR WITH AIR GAP
    85.
    发明申请
    MICROMACHINED ELECTROSTATIC ACTUATOR WITH AIR GAP 审中-公开
    带空气隙的MICROMACHINED静电执行器

    公开(公告)号:WO00073839A1

    公开(公告)日:2000-12-07

    申请号:PCT/US2000/013759

    申请日:2000-05-19

    Abstract: A MEMS (Micro Electro Mechanical System) electrostatic device operated with lower and more predictable operating voltages is provided. An electrostatic actuator, an electrostatic attenuator of electromagnetic radiation, and a method for attenuating electromagnetic radiation are provided. Improved operating voltage characteristics are achieved by defining a non increasing air gap between the substrate electrode and flexible composite electrode within the electrostatic device. A medial portion of a multilayer flexible composite overlying the electromechanical substrate is held in position regardless of the application of electrostatic force, thereby sustaining the defined air gap. The air gap is relatively constant in separation from the underlying microelectronic surface when the medial portion is cantilevered in one embodiment. A further embodiment provides an air gap that decreases to zero when the medial portion approaches and contacts the underlying microelectronic surface. A moveable distal portion of the flexible composite is biased to curl naturally due to differences in thermal coefficients of expansion between the component layers. In response to electrostatic forces, the distal portion moves and thereby alters the distance separating the flexible composite from the underlaying microelectronic surface. Structures and techniques for controlling bias in the medial portion and the resulting air gap are provided. The electrostatic device may be disposed to selectively clear or intercept the path of electromagnetic radiation. Materials used in the attenuator can be selected to pass, reflect, or absorb various types of electromagnetic radiation. A plurality of electromagnetic attenuators may be disposed in an array and selectively activated in subsets.

    Abstract translation: 提供了具有更低和更可预测的工作电压的MEMS(微机电系统)静电装置。 提供静电致动器,电磁辐射的静电衰减器和用于衰减电磁辐射的方法。 通过在静电装置内限定衬底电极和柔性复合电极之间的不增加的空气间隙来实现改进的工作电压特性。 覆盖机电衬底的多层柔性复合体的中间部分保持在适当的位置,而不管施加静电力,从而维持限定的气隙。 在一个实施例中,当中间部分为悬臂时,气隙与下面的微电子表面分离时相对恒定。 另一实施例提供了当内侧部分靠近并接触下面的微电子表面时减小到零的气隙。 柔性复合材料的可移动远端部分被偏置以由于组件层之间的热膨胀系数的差异而自然地卷曲。 响应于静电力,远端部分移动,从而改变将柔性复合材料与垫层微电子表面分开的距离。 提供了用于控制中间部分中的偏压和产生的气隙的结构和技术。 静电装置可以设置成选择性地清除或拦截电磁辐射的路径。 衰减器中使用的材料可以选择通过,反射或吸收各种类型的电磁辐射。 多个电磁衰减器可以被布置成阵列并且选择性地在子集中激活。

    MICRO-RELAY
    86.
    发明申请
    MICRO-RELAY 审中-公开
    微型继电器

    公开(公告)号:WO00046852A1

    公开(公告)日:2000-08-10

    申请号:PCT/SG1999/000005

    申请日:1999-02-04

    Abstract: A microstructure relay comprising an s-shaped support member is provided. The s-shape support member creates over-travel in the relay in order to produce high contact force and low contact resistance over the lifetime of the relay. Compressive and tensile stress-inducing layers on appropriate parts of the support member induce it to bend as desired.

    Abstract translation: 提供了包括S形支撑构件的微结构继电器。 s形支撑构件在继电器中产生超行程,以在继电器的寿命期间产生高接触力和低接触电阻。 在支撑构件的适当部分上的压缩和拉伸应力诱导层使其根据需要弯曲。

    MEMS CHIP AND MANUFACTURING METHOD THEREFOR
    88.
    发明公开
    MEMS CHIP AND MANUFACTURING METHOD THEREFOR 审中-公开
    MEMS-CHIP UND HERSTELLUNGSVERFAHRENDAFÜR

    公开(公告)号:EP2857348A4

    公开(公告)日:2016-01-13

    申请号:EP13813814

    申请日:2013-06-29

    Abstract: A MEMS chip (100) includes a silicon substrate layer (110), a first oxidation layer (120) and a first thin film layer (130). The silicon substrate layer includes a front surface (112) for a MEMS process and a rear surface (114), both the front surface and the rear surface being polished surfaces. The first oxidation layer is mainly made of silicon dioxide and is formed on the rear surface of the silicon substrate layer. The first thin film layer is mainly made of silicon nitride and is formed on the surface of the first oxidation layer. In the above MEMS chip, by sequentially laminating a first oxidation layer and a first thin film layer on the rear surface of a silicon substrate layer, the rear surface is effectively protected to prevent the scratch damage in the course of a MEMS process. A manufacturing method for the MEMS chip is also provided.

    Abstract translation: MEMS芯片(100)包括硅衬底层(110),第一氧化层(120)和第一薄膜层(130)。 硅衬底层包括用于MEMS工艺的前表面(112)和后表面(114),前表面和后表面都是​​抛光表面。 第一氧化层主要由二氧化硅制成,并形成在硅衬底层的后表面上。 第一薄膜层主要由氮化硅制成并形成在第一氧化层的表面上。 在上述MEMS芯片中,通过在硅衬底层的后表面依次层叠第一氧化层和第一薄膜层,可有效地保护背面以防止MEMS工艺过程中的划痕损伤。 还提供了用于MEMS芯片的制造方法。

    MEMS CHIP AND MANUFACTURING METHOD THEREFOR
    89.
    发明公开
    MEMS CHIP AND MANUFACTURING METHOD THEREFOR 审中-公开
    MEMS芯片及其制造方法

    公开(公告)号:EP2857348A1

    公开(公告)日:2015-04-08

    申请号:EP13813814.4

    申请日:2013-06-29

    Abstract: A MEMS chip (100) includes a silicon substrate layer (110), a first oxidation layer (120) and a first thin film layer (130). The silicon substrate layer includes a front surface (112) for a MEMS process and a rear surface (114), both the front surface and the rear surface being polished surfaces. The first oxidation layer is mainly made of silicon dioxide and is formed on the rear surface of the silicon substrate layer. The first thin film layer is mainly made of silicon nitride and is formed on the surface of the first oxidation layer. In the above MEMS chip, by sequentially laminating a first oxidation layer and a first thin film layer on the rear surface of a silicon substrate layer, the rear surface is effectively protected to prevent the scratch damage in the course of a MEMS process. A manufacturing method for the MEMS chip is also provided.

    ABLÖSBARE MIKRO- UND NANOBAUTEILE FÜR PLATZSPARENDEN EINSATZ
    90.
    发明公开
    ABLÖSBARE MIKRO- UND NANOBAUTEILE FÜR PLATZSPARENDEN EINSATZ 审中-公开
    移动微纳米组件节省空间的应用

    公开(公告)号:EP2678265A2

    公开(公告)日:2014-01-01

    申请号:EP12710454.5

    申请日:2012-02-24

    Applicant: Harting KGAA

    Abstract: The invention relates to space-saving micro- and nano-components and to methods for producing same. The components are characterized in that they do not comprise a rigid substrate having a considerable thickness. The mechanical stresses, which result in deformations and/or warpage within a component, are compensated by means of a mechanically stress-compensated design and/or by means of active mechanical stress compensation by depositing suitable stress compensation layers such that there is no need for relatively thick substrates. Thus, the overall thickness of the components is decreased and the integration options thereof in technical systems are improved. In addition, the field of application of such components is expanded.

Patent Agency Ranking