Abstract:
Die Erfindung betrifft ein Herstellungsverfahren für eine mikromechanische elektrostatische Verstellvorrichtung (10) mit den Schritten: Aufbringen einer ersten leitfähigen Schicht (12) auf eine Unterlage (28,30), Ätzen der ersten leitfähigen Schicht (12) zum Bilden von mindestens einer ersten Elektrode (16) aus dem Material der ersten leitfähigen Schicht (12), Aufbringen einer Trennschicht (32a) auf die erste leitfähige Schicht (12), Aufbringen einer zweiten leitfähigen Schicht auf die Trennschicht (32a), Ätzen der zweiten leitfähigen Schicht zum Bilden von mindestens einer zweiten Elektrode (22) aus dem Material der zweiten leitfähigen Schicht, und Aufbringen einer Abdeckschicht (40) auf die zweite Elektrode (22) und Biegen der zweiten Elektrode (22) mittels einer von der Abdeckschicht (40) auf die zweite Elektrode (22) ausgeübten mechanischen Druckspannung. Des Weiteren betrifft die Erfindung eine entsprechende mikromechanische elektrostatische Verstellvorrichtung.
Abstract:
A method of forming a thick polysilicon layer for a MEMS inertial sensor includes forming a first amorphous polysilicon film on a substrate in an elevated temperature environment for a period of time such that a portion of the amorphous polysilicon film undergoes crystallization and grain growth at least near the substrate. The method also includes forming an oxide layer on the first amorphous polysilicon film, annealing the first amorphous polysilicon film in an environment of about 1100°C or greater to produce a crystalline film, and removing the oxide layer. Lastly, the method includes forming a second amorphous polysilicon film on a surface of the crystalline polysilicon film in an elevated temperature environment for a period of time such that a portion of the second amorphous polysilicon film undergoes crystallization and grain growth at least near the surface of the crystalline polysilicon film.
Abstract:
Le dispositif micromécanique comporte une poutre (1) mobile rattachée par ses deux extrémités (2) à un cadre (3) rigide comportant deux bras (4) ayant chacun deux extrémités (5). Les extrémités (5) d'un bras (4) sont respectivement solidaires des deux extrémités (2) de la poutre (1) mobile. Chaque bras (4) a une partie médiane (6) disposée entre les deux extrémités (5) du bras (4) correspondant. Une face arrière de la partie médiane (6) de chaque bras (4) est rattachée à un support (10) de base. Le cadre (3) comporte au moins un élément (11) sous contrainte permettant d'ajuster l'état de contrainte de la poutre. L'élément (11 ) sous contrainte peut être centré entre la face avant et la face arrière du bras (4) correspondant. Le cadre (3) peut comporter des paires d'éléments (11 ) sous contrainte avant et arrière disposés, l'un en regard de l'autre, respectivement à la face avant et à la face arrière des bras (4).
Abstract:
A suspended semiconductor film is anchored to a substrate at at least two opposed anchor positions, and film segments are deposited on the semiconductor film adjacent to one or more of the anchor positions to apply either tensile or compressive stress to the semiconductor film between the film segments. A crystalline silicon film may be anchored to the substrate and have tensile stress applied thereto to reduce the lattice mismatch between the silicon and a silicon-germanium layer deposited onto the silicon film. By controlling the level of stress in the silicon film, the size, density and distribution of quantum dots formed in a high germanium content silicon-germanium film deposited on the silicon film can be controlled.
Abstract:
A MEMS (Micro Electro Mechanical System) electrostatic device operated with lower and more predictable operating voltages is provided. An electrostatic actuator, an electrostatic attenuator of electromagnetic radiation, and a method for attenuating electromagnetic radiation are provided. Improved operating voltage characteristics are achieved by defining a non increasing air gap between the substrate electrode and flexible composite electrode within the electrostatic device. A medial portion of a multilayer flexible composite overlying the electromechanical substrate is held in position regardless of the application of electrostatic force, thereby sustaining the defined air gap. The air gap is relatively constant in separation from the underlying microelectronic surface when the medial portion is cantilevered in one embodiment. A further embodiment provides an air gap that decreases to zero when the medial portion approaches and contacts the underlying microelectronic surface. A moveable distal portion of the flexible composite is biased to curl naturally due to differences in thermal coefficients of expansion between the component layers. In response to electrostatic forces, the distal portion moves and thereby alters the distance separating the flexible composite from the underlaying microelectronic surface. Structures and techniques for controlling bias in the medial portion and the resulting air gap are provided. The electrostatic device may be disposed to selectively clear or intercept the path of electromagnetic radiation. Materials used in the attenuator can be selected to pass, reflect, or absorb various types of electromagnetic radiation. A plurality of electromagnetic attenuators may be disposed in an array and selectively activated in subsets.
Abstract:
A microstructure relay comprising an s-shaped support member is provided. The s-shape support member creates over-travel in the relay in order to produce high contact force and low contact resistance over the lifetime of the relay. Compressive and tensile stress-inducing layers on appropriate parts of the support member induce it to bend as desired.
Abstract:
A MEMS chip (100) includes a silicon substrate layer (110), a first oxidation layer (120) and a first thin film layer (130). The silicon substrate layer includes a front surface (112) for a MEMS process and a rear surface (114), both the front surface and the rear surface being polished surfaces. The first oxidation layer is mainly made of silicon dioxide and is formed on the rear surface of the silicon substrate layer. The first thin film layer is mainly made of silicon nitride and is formed on the surface of the first oxidation layer. In the above MEMS chip, by sequentially laminating a first oxidation layer and a first thin film layer on the rear surface of a silicon substrate layer, the rear surface is effectively protected to prevent the scratch damage in the course of a MEMS process. A manufacturing method for the MEMS chip is also provided.
Abstract:
A MEMS chip (100) includes a silicon substrate layer (110), a first oxidation layer (120) and a first thin film layer (130). The silicon substrate layer includes a front surface (112) for a MEMS process and a rear surface (114), both the front surface and the rear surface being polished surfaces. The first oxidation layer is mainly made of silicon dioxide and is formed on the rear surface of the silicon substrate layer. The first thin film layer is mainly made of silicon nitride and is formed on the surface of the first oxidation layer. In the above MEMS chip, by sequentially laminating a first oxidation layer and a first thin film layer on the rear surface of a silicon substrate layer, the rear surface is effectively protected to prevent the scratch damage in the course of a MEMS process. A manufacturing method for the MEMS chip is also provided.
Abstract:
The invention relates to space-saving micro- and nano-components and to methods for producing same. The components are characterized in that they do not comprise a rigid substrate having a considerable thickness. The mechanical stresses, which result in deformations and/or warpage within a component, are compensated by means of a mechanically stress-compensated design and/or by means of active mechanical stress compensation by depositing suitable stress compensation layers such that there is no need for relatively thick substrates. Thus, the overall thickness of the components is decreased and the integration options thereof in technical systems are improved. In addition, the field of application of such components is expanded.