PHOTON ENHANCED THERMIONIC EMISSION
    82.
    发明申请
    PHOTON ENHANCED THERMIONIC EMISSION 审中-公开
    光子增强THERMONIC排放

    公开(公告)号:WO2010044891A3

    公开(公告)日:2011-04-07

    申请号:PCT/US2009005669

    申请日:2009-10-19

    CPC classification number: H01J40/06 H01J45/00 H01J2201/30434 H02S99/00

    Abstract: Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200 0C) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

    Abstract translation: 光子增强型热离子发射(PETE)被用于提高辐射能量转换的效率。 一个热(大于200℃)的半导体阴极被照亮使其发射电子。 因为阴极是热的,所以在相同的照明条件下比从室温(或较冷的)阴极发射的电子要大得多。 作为这种增加的电子发射的结果,相对于常规光伏器件,能量转换效率可以显着增加。 在PETE中,阴极电子可以(并且通常被)相对于阴极热化。 因此,PETE不依赖于非热电子发射,并且比热载流子发射方法更容易实现。

    CARBON NANOTUBE ELECTRON IONIZATION SOURCES
    83.
    发明申请
    CARBON NANOTUBE ELECTRON IONIZATION SOURCES 审中-公开
    碳纳米管电子离子源

    公开(公告)号:WO2005048290A3

    公开(公告)日:2005-09-15

    申请号:PCT/US2004037956

    申请日:2004-11-12

    Abstract: An ion source for use in a mass spectrometer includes an electron emitter assembly (30) configured to emit electron beams, wherein the electron emitter assembly comprises carbon nanotube bundles fixed to a substrate for emitting the electron beams, a first control grid configured to control emission of the electron beams, and a second control grid configured to control energies of the electron beams; an ionization chamber (34) having an electron-beam inlet (38) to allow the electron beams to enter the ionization chamber, a sample inlet for sample introduction, and an ion-beam outlet (29) to provide an exit for ionized sample molecules; an electron lens (31) disposed between the electron emitter assembly and the ionization chamber to focus the electron beams; and at least one electrode (37) disposed proximate the ion-beam outlet to focus the ionized sample molecules exiting the ionization chamber.

    Abstract translation: 用于质谱仪的离子源包括被配置为发射电子束的电子发射器组件(30),其中电子发射器组件包括固定到用于发射电子束的衬底的碳纳米管束,配置成控制发射的第一控制栅 以及被配置为控制电子束的能量的第二控制栅格; 具有电子束入口(38)以允许电子束进入电离室的电离室(34),用于样品引入的样品入口和用于离子化样品分子的离子束出口(29) ; 电子透镜(31),设置在电子发射器组件和电离室之间以聚焦电子束; 以及设置在离子束出口附近的至少一个电极(37),以将离子化的样品分子聚焦离开电离室。

    ELECTRON SOURCE AND APPLICATIONS OF THE SAME
    84.
    发明申请
    ELECTRON SOURCE AND APPLICATIONS OF THE SAME 审中-公开
    电子源及其应用

    公开(公告)号:WO1996042101A1

    公开(公告)日:1996-12-27

    申请号:PCT/IB1996000573

    申请日:1996-06-11

    CPC classification number: B82Y10/00 H01J3/022 H01J2201/30434

    Abstract: The electron source comprises a uniform microscopically flat carbon nanotube film parallel to which and close to which are one or several perforated thin conducting plates, which are electrically insulated from the microscopically flat carbon nanotube film. An electric field at the microscopically flat carbon nanotube film, provided by a voltage applied to the microscopically flat carbon nanotube film and to the conducting plates causes electron emission from the microscopically flat carbon nanotube film by the field emission effect resulting in an electron beam which passes through the perforations in the conducting plates. The electron beam intensity is determined by the electric field at the carbon nanotube film which can be regulated with the voltages applied to perforated thin conducting plates.

    Abstract translation: 电子源包括平行的微观平坦的碳纳米管薄膜,并且接近于与微观平坦的碳纳米管薄膜电绝缘的一个或多个穿孔的薄导电板。 通过施加到显微平面碳纳米管膜和导电板上的电压提供的微观平坦碳纳米管膜上的电场通过场发射效应导致来自显微平面碳纳米管膜的电子发射,导致电子束通过 通过导电板中的穿孔。 电子束强度由碳纳米管膜上的电场确定,可以用施加到穿孔的薄导电板上的电压进行调节。

    METHODS AND APPARATUS FOR DETECTING NEUTRAL CHEMICAL UNITS VIA NANOSTRUCTURES
    86.
    发明申请
    METHODS AND APPARATUS FOR DETECTING NEUTRAL CHEMICAL UNITS VIA NANOSTRUCTURES 审中-公开
    通过纳米结构检测中性化学单位的方法和装置

    公开(公告)号:WO2011119849A1

    公开(公告)日:2011-09-29

    申请号:PCT/US2011/029818

    申请日:2011-03-24

    Abstract: Suspended nanotubes are used to capture and ionize neutral chemical units, such as individual atoms, molecules, and condensates, with excellent efficiency and sensitivity. Applying a voltage to the nanotube(s) (with respect to a grounding surface) creates an attractive potential between a polarizable neutral chemical unit and the nanotube that varies as 1/r2, where r is the unit's distance from the nanotube. An atom approaching the nanotube with a sub-threshold angular momentum is captured by the potential and eventually spirals towards the nanotube. The atom ionizes as in comes into close proximity with a sidewall of the nanotube, creating an ion whose polarity matches the polarity of the electric potential of the nanotube. Repulsive forces eject the ion, which can be detected more easily than a neutral chemical unit. Suspended nanotubes can be used to detect small numbers of neutral chemical units (e.g., single atoms) for applications in sensing and interferometry.

    Abstract translation: 悬浮的纳米管用于捕获和电离中性化学单元,例如单个原子,分子和缩合物,具有优异的效率和灵敏度。 向纳米管施加电压(相对于接地面)在可极化的中性化学单元和以1 / r2变化的纳米管之间产生有吸引力的电位,其中r是单位与纳米管的距离。 接近具有亚阈值角动量的纳米管的原子被电位俘获并最终向纳米管螺旋。 该原子电离,因为它与纳米管的侧壁紧密接近,产生极性与纳米管的电位极性一致的离子。 排斥力推出离子,比中性化学单元更容易检出。 悬浮的纳米管可用于检测用于感测和干涉测量中的应用的少量中性化学单元(例如,单个原子)。

    SOURCE OF A COLLIMATED ELECTRONIC BEAM WITH COLD CATHODE
    87.
    发明申请
    SOURCE OF A COLLIMATED ELECTRONIC BEAM WITH COLD CATHODE 审中-公开
    具有冷阴极的收缩电子束的源

    公开(公告)号:WO2010139740A3

    公开(公告)日:2011-01-27

    申请号:PCT/EP2010057734

    申请日:2010-06-02

    Abstract: The invention relates in general terms to the field of "cold cathode" electronic cathodes including an electrically conductive flat substrate (2) and an emitter comprising a tip (1) with a micrometric or nanometric diameter arranged vertically above the surface of the substrate. The cathode according to the invention comprises a single annular electrode (6) electrically insulated from the substrate by an insulating layer (3) and centred on the emitter, the source comprising a means for applying a potential difference of several dozen volts between the substrate and the annular electrode, enough to cause the emission of an electronic beam from the tip of the emitter, the annular electrode being large enough to focus said electronic beam. A source of an electronic beam can comprise a plurality of identical cathodes arranged in a specific pattern.

    Abstract translation: 本发明一般涉及“冷阴极”电子阴极领域,包括导电平面基底(2)和发射体,其包括垂直于基底表面布置的具有微米或纳米直径的尖端(1)。 根据本发明的阴极包括通过绝缘层(3)与衬底电绝缘并以发射器为中心的单个环形电极(6),源极包括用于在衬底和衬底之间施加几十伏特的电位差的装置 环形电极足以引起来自发射器尖端的电子束的发射,环形电极足够大以聚焦所述电子束。 电子束的源可以包括以特定图案布置的多个相同的阴极。

    PHOTON ENHANCED THERMIONIC EMISSION
    88.
    发明申请
    PHOTON ENHANCED THERMIONIC EMISSION 审中-公开
    光子增强THERMONIC排放

    公开(公告)号:WO2010044891A2

    公开(公告)日:2010-04-22

    申请号:PCT/US2009/005669

    申请日:2009-10-16

    CPC classification number: H01J40/06 H01J45/00 H01J2201/30434 H02S99/00

    Abstract: Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200 0C) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

    Abstract translation: 光子增强型热离子发射(PETE)被用于提高辐射能量转换效率。 一个热(大于200℃)的半导体阴极被照亮使其发射电子。 因为阴极是热的,在相同的照明条件下比在室温(或较冷)阴极发射的电子要大得多的发射电子。 作为这种增加的电子发射的结果,相对于常规光伏器件,能量转换效率可以显着增加。 在PETE中,阴极电子可以(并且通常被)相对于阴极热化。 因此,PETE不依赖于非热电子发射,并且比热载流子发射方法更容易实现。

Patent Agency Ranking