Abstract:
Computing systems with conventional CPUs coupled to co-processors or accelerators implemented in FPGAs (Field Programmable Gate Arrays). One embodiment of the systems and methods according to the invention includes a FPGA accelerator implemented in a computer system by providing an adapter board configured to be used in a standard CPU socket.
Abstract:
A method and apparatus is provided for electrically and mechanically interconnecting electronic circuit assemblies or electronic modules. An integrated circuit (300) includes a plurality of leads (302) extending from a surface (305), each of the leads (302) having a seating portion (403) and a stem portion (402). A printed circuit board (400) includes a plurality of plated through holes (401) therein corresponding to the plurality of leads (302) extending from the integrated circuit (300). The steps of the method include positioning the printed circuit board (400) so that a lower surface (404) of the printed circuit board (400) rest on the seating portion (403) of the leads (302) of the integrated circuit (300), and so that the stem portion (302) of each of the leads are positioned within the corresponding plated through holes (401) in the printed circuit board (400). An electrically conductive epoxy adhesive (602) is then dispensed into the holes (401) having the leads (302) therein, and cured to form a solid, electrical, and mechanical connection between the printed circuit board (400) and integrated circuit (300).
Abstract:
Switching noise within an LGA-packaged or PGA-packaged IC Vdd and IC Vss nodes is reduced by spreading the electrical current in the bypass path to reduce the effective current loop area, and thus reduce the energy stored in the magnetic field surrounding the current path. This result is achieved by minimizing the horizontal components of the linkage paths between the IC nodes to be bypassed and the bypass capacitor. Since effective inductance Leff seen by the bypass capacitor is proportional to magnetic energy, Leff is reduced over a broad band of frequencies. For each bypass capacitor, a pair of conductive vias is formed. A first via is coupled to the LGA package Vcc plane and to the IC Vdd node, and a second via is coupled to the LGA package Vss plane and to the IC Vss node. These vias preferably are spaced-apart a distance ΔX corresponding to the distance between first and second connections on the bypass capacitor although sub-mm offsets in a via at connections may be used to accommodate differing connection pitches. The bypass capacitor connections are coupled to the lower surfaces of the first and second vias, at the lower surface of the LGA package. When the package is inserted into a socket, the bypass capacitor extends into at least some of the otherwise unused recess in the socket. Multiple bypass capacitors are accommodated by forming additional spaced-apart vias that may be electrically parallel-coupled.
Abstract:
A printed circuit board (10) of a multilayer structure has a plurality of pads (12B, 12C) embedded together with a wiring pattern (11) in an inner layer thereof. An insulating material on the pads (12B, 12C) is removed from the printed circuit board (10) to form recesses (14B, 14C) through which the pads (12B, 12C) are exposed. A semiconductor package (22) is placed on the printed circuit board (11), and solder balls (20B, 20C) of the semiconductor package (22) are directly connected to the pads (12B, 12C) through the recesses (14B, 14C).
Abstract:
An apparatus comprising a multi-layer substrate (10) including a plurality of layers of insulative material (12), at least one well (15) formed in at least one of the layers, the well (15) extending from an outer surface of the multi-layer substrate to an inner surface of the multi-layer substrate, and an electrically conductive component (13) formed within the well (15) on the inner surface of the multi-layer substrate; and a device having at least one electrically conductive lead or wire (11) extending into the well (15) and being in direct physical contact with the electrically conductive component (13) formed on the inner surface of the multi-layer substrate. Also, a method of manufacturing an apparatus comprising the steps of forming a multi-layer substrate (10) including a plurality of layers of insulative material (12), at least one well (15) formed in at least one of the layers, the well (15) extending from an outer surface of the multi-layer substrate to an inner surface of the multi-layer substrate, and an electrically conductive component (13) formed within the well (15) on the inner surface of the multi-layer substrate; and extending at least one electrically conductive lead or wire (11) from a device into the well (15) such that the lead or wire is in direct physical contact with the electrically conductive component (13) formed on the inner surface of the multi-layer substrate.
Abstract:
An apparatus comprising a multi-layer substrate (10) including a plurality of layers of insulative material (12), at least one well (15) formed in at least one of the layers, the well (15) extending from an outer surface of the multi-layer substrate to an inner surface of the multi-layer substrate, and an electrically conductive component (13) formed within the well (15) on the inner surface of the multi-layer substrate; and a device having at least one electrically conductive lead or wire (11) extending into the well (15) and being in direct physical contact with the electrically conductive component (13) formed on the inner surface of the multi-layer substrate. Also, a method of manufacturing an apparatus comprising the steps of forming a multi-layer substrate (10) including a plurality of layers of insulative material (12), at least one well (15) formed in at least one of the layers, the well (15) extending from an outer surface of the multi-layer substrate to an inner surface of the multi-layer substrate, and an electrically conductive component (13) formed within the well (15) on the inner surface of the multi-layer substrate; and extending at least one electrically conductive lead or wire (11) from a device into the well (15) such that the lead or wire is in direct physical contact with the electrically conductive component (13) formed on the inner surface of the multi-layer substrate.