Abstract:
An objective lens for use in probe-forming particle-optical columns such as focused ion beam equipment, scanning electron microscopes, and helium microscopes is described. It comprises two interleaved (quadrupole/octopole) lenses and two or three ancillary octopole lenses, and is capable of simultaneous compensation of spherical (Cs) and chromatic (Cc) aberrations of the objective lens alone or of the complete particle-optical column. Additional apparatus comprising a gridded aperture and position-sensitive detector is specified, together with a method to measure and minimize all of the five independent third-order aberration coefficients of the objective lens.
Abstract:
A method for projecting an electron beam, used notably in direct or indirect writing lithography and in electronic microscopy. Proximity effects created by the forward and backward scattering of the electrons of the beam in interaction with the target must be corrected. For this, the convolution of a point spread function with the geometry of the target is conventionally used. At least one of the components of the point spread function has its maximum value not located on the center of the beam. Preferably, the maximum value is instead located on the backward scattering peak. Advantageously, the point spread function uses gamma distribution laws.
Abstract:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
Abstract:
A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.
Abstract:
An electron beam device has a cathode that generates a fan-shaped electron beam. A first focusing lens includes first and second plates on opposed sides of a filament. The edges of the plates closest to a positively charged anode are arcuate, so that as individual electrons are accelerated normal to the edge of the charged plates, the beam increases in length with departure from the filament. A second focusing lens includes third and fourth plates on opposed sides of the first focusing lens. Each of the third and fourth plates has an arcuate edge proximate to the positively charged anode. The plates of the first and second focusing lenses provide focusing in a widthwise direction, while defining the increase in the lengthwise direction. Preferably, the filament is also curved. In the preferred embodiment, the curvature of the plates of the first focusing lens defines a common radius with the plates of the second focusing lens. The electron beam may be projected from the interior of an evacuated tube and may have a length that is not limited by the length of the filament.