Abstract:
Touch sensors with one or more piezoelectric elements and devices containing such touch sensors are presented. The touch sensor contains keys that are independently actuated. Contact with a key provides tactile feedback through the piezoelectric element to the user. Each key provides an individual tactile feedback pattern that is dependent on the particular key contacted as well as the function of the key at the time of contact. Actuation of the key provides a different tactile feedback pattern. The piezoelectric element is bonded directly to a printed circuit board, on which electronic components are also mounted.
Abstract:
Embedded capacitors comprise a bimetal foil (500) that includes a first copper layer (205) and an aluminum layer (210) on the first copper layer. The aluminum layer has a smooth side adjacent the first copper layer and a high surface area textured side (215) opposite the first copper layer. The bimetal foil further includes an aluminum oxide layer (305) on the high surface area textured side of the aluminum layer, a conductive polymer layer (420) on the aluminum oxide layer, and a second copper layer (535) overlying the aluminum oxide layer. The bimetal foil may be embedded in a circuit board (700) to form high value embedded capacitors.
Abstract:
Embedded capacitors comprise a bimetal foil (500) that includes a first copper layer (205) and an aluminum layer (210) on the first copper layer. The aluminum layer has a smooth side adjacent the first copper layer and a high surface area textured side (215) opposite the first copper layer. The bimetal foil further includes an aluminum oxide layer (305) on the high surface area textured side of the aluminum layer, a conductive polymer layer (420) on the aluminum oxide layer, and a second copper layer (535) overlying the aluminum oxide layer. The bimetal foil may be embedded in a circuit board (700) to form high value embedded capacitors.
Abstract:
A method is disclosed for fabricating a patterned embedded capacitance layer. The method includes fabricating (1305, 1310) a ceramic oxide layer (510) overlying a conductive metal layer (515) overlying a printed circuit substrate (505), perforating (1320) the ceramic oxide layer within a region (705), and removing (1325) the ceramic oxide layer and the conductive metal layer in the region by chemical etching of the conductive metal layer. The ceramic oxide layer may be less than 1 micron thick.
Abstract:
An improved method for forming a capacitor. The method includes the steps of: providing a metal foil; forming a dielectric on the metal foil; applying a non-conductive polymer dam on the dielectric to isolate discrete regions of the dielectric; forming a cathode in at least one discrete region of the discrete regions on the dielectric; and cutting the metal foil at the non-conductive polymer dam to isolate at least one capacitor comprising one cathode, one discrete region of the dielectric and a portion of the metal foil with the discrete region of the dielectric.
Abstract:
A high impedance surface (300) has a printed circuit board (302) with a first surface (314) and a second surface (316), and a continuous electrically conductive plate (319) disposed on the second surface (316) of the printed circuit board (302). A plurality of electrically conductive plates (318) is disposed on the first surface (314) of the printed circuit board (302), while a plurality of elements are also provided. Each element comprises at least one of (1) at least one multi-layer inductor (330, 331) electrically coupled between at least two of the electrically conductive plates (318) and embedded within the printed circuit board (302), and (2) at least one capacitor (320) electrically coupled between two of the electrically conductive plates (318). The capacitor (320) comprises at least one of (a) a dielectric material (328) disposed between adjacent electrically conductive plates, and (b) a mezzanine capacitor embedded within the printed circuit board (302).
Abstract:
A dielectric circuit board foil (400, 600) includes a conductive metal foil layer (210, 660), a crystallized dielectric oxide layer (405, 655) disposed adjacent a first surface of the conductive metal foil layer, a lanthanum nickelate layer (414, 664) disposed on the crystallized dielectric oxide layer, and an electrode layer (415, 665) that is substantially made of one or more base metals disposed on the lanthanum nickelate layer. The foil (400, 600) may be adhered to a printed circuit board sub-structure (700) and used to economically fabricate a plurality of embedded capacitors, including isolated capacitors of large capacitive density (> 1000 pf/mm²).
Abstract translation:电介质电路板箔(400,600)包括导电金属箔层(210,660),邻近导电金属箔层的第一表面设置的结晶介电氧化物层(405,655),镍酸镧层(414) ,664)和基本上由设置在镍酸镧层上的一种或多种贱金属制成的电极层(415,665)。 箔(400,600)可以粘附到印刷电路板子结构(700)上,并用于经济地制造多个嵌入式电容器,包括具有大电容密度(> 1000pf / mm 2)的隔离电容器。
Abstract:
A method of presenting content from a remote device is provided. Limited bandwidth content, transmitted from a remote device, is received at a local device. The limited bandwidth content is superimposed on enhanced content retrieved by the local device. The limited bandwidth content overlaps with the enhanced content such that the limited bandwidth content is a subset of what is represented by the enhanced content. The limited bandwidth or enhanced content may either be still images or video that is stitched together and displayed at the local device.
Abstract:
A method of presenting content from a remote device is provided. Limited bandwidth content, transmitted from a remote device, is received at a local device. The limited bandwidth content is superimposed on enhanced content retrieved by the local device. The limited bandwidth content overlaps with the enhanced content such that the limited bandwidth content is a subset of what is represented by the enhanced content. The limited bandwidth or enhanced content may either be still images or video that is stitched together and displayed at the local device.
Abstract:
A high impedance surface (300) has a printed circuit board (302) with a first surface (314) and a second surface (316), and a continuous electrically conductive plate (319) disposed on the second surface (316) of the printed circuit board (302). A plurality of electrically conductive plates (318) is disposed on the first surface (314) of the printed circuit board (302), while a plurality of elements are also provided. Each element comprises at least one of (1) at least one multi-layer inductor (330, 331) electrically coupled between at least two of the electrically conductive plates (318) and embedded within the printed circuit board (302), and (2) at least one capacitor (320) electrically coupled between two of the electrically conductive plates (318). The capacitor (320) comprises at least one of (a) a dielectric material (328) disposed between adjacent electrically conductive plates, and (b) a mezzanine capacitor embedded within the printed circuit board (302).