Abstract:
A flexible, high density decal and the use thereof methods of forming detachable electrical interconnections between a flexible chip carrier and a printed wiring board. The flexible decal has fine-pitch pads on a first surface and pads of a pitch wider than the fine pitch on a second surface, the fine-pitch pads on the first surface designed to electrically connect to a semiconductor device, and the wider-pitch pads on the second surface designed to electrically connect to a printed wiring board or the like. The pads on the first surface are conductively wired to the pads on the second surface through one or more insulating levels in the flexible decal.
Abstract:
A capacitive substrate and method of making same in which first and second glass layers are used. A first conductor is formed on a first of the glass layers and a capacitive dielectric material is positioned over the conductor. The second conductor is then positioned on the capacitive dielectric and the second glass layer positioned over the second conductor. Conductive thru-holes are formed to couple to the first and second conductors, respectively, such that the conductors and capacitive dielectric material form a capacitor when the capacitive substrate is in operation.
Abstract:
An electrical assembly which includes a circuitized substrate including a first plurality of dielectric and electrically conductive circuit layers alternatively oriented in a stacked orientation, a thermal cooling structure bonded to one of the dielectric layers and at least one electrical component mounted on the circuitized substrate. The circuitized substrate includes a plurality of electrically conductive and thermally conductive thru-holes located therein, selected ones of the thermally conductive thru-holes thermally coupled to the electrical component(s) and extending through the first plurality of dielectric and electrically conductive circuit layers and being thermally coupled to the thermal cooling structure, each of these selected ones of thermally conductive thru-holes providing a thermal path from the electrical component to the thermal cooling structure during assembly operation. The thermal cooling structure is adapted for having cooling fluid pass there-through during operation of the assembly. A method of making the substrate is also provided.
Abstract:
A capacitive substrate and method of making same in which first and second glass layers are used. A first conductor is formed on a first of the glass layers and a capacitive dielectric material is positioned over the conductor. The second conductor is then positioned on the capacitive dielectric and the second glass layer positioned over the second conductor. Conductive thru-holes are formed to couple to the first and second conductors, respectively, such that the conductors and capacitive dielectric material form a capacitor when the capacitive substrate is in operation.
Abstract:
A method is provided for making ferrules for connecting optical fibers to other optical fibers or to an optical input device such as an optical chip. The method utilizes ceramic greensheets or silicon wafers. In one method, the greensheets are stacked and laminated and then fiber optic through openings are provided in the laminate for holding the fibers. The laminate is then sintered forming the ferrule.
Abstract:
An optical coupler that provides for the direct mounting of integrated circuit(s). The coupler includes a two-part housing with grooves for accommodating optical fibers that are held in place when the two parts are put together. Circuitry is formed on the housing and solder balls, when heated to a liquid state and cooled (reflowed), are used to attach integrated circuit(s) onto the housing. At least one of these integrated circuit(s) is an optical die that is positioned in close proximity to the optical fibers to provide for the receipt and/or transmission of optical signals. The reflowing of the solder balls forms an electrical connection between the circuitry on the housing and the integrated circuit(s) and provides for alignment of these components. The housing is attached to a circuitized substrate using reflowed solder balls or wirebonds.
Abstract:
A solar recharge station is described having a contact area, a battery bank charge area and a solar panel array for maintaining the battery bank charged. The contact area includes electric contacts formed for engagement automatically by contacts on an electric powered vehicle as the vehicle enters the contact area. The battery bank is connected so that its energy is available for either recharging the vehicle or other use, and in case the vehicle needs a recharge but the battery banks lacks sufficient charge, ordinary house voltage is used.
Abstract:
A method of making a circuitized substrate which includes at least one and possibly several capacitors as part thereof. In one embodiment, the substrate is produced by forming a layer of capacitive dielectric material on a dielectric layer and thereafter forming channels with the capacitive material, e.g., using a laser. The channels are then filled with conductive material, e.g., copper, using selected deposition techniques, e.g., sputtering, electro-less plating and electroplating. A second dielectric layer is then formed atop the capacitor and a capacitor “core” results. This “core” may then be combined with other dielectric and conductive layers to form a larger, multilayered PCB or chip carrier. In an alternative approach, the capacitive dielectric material may be photo-imageable, with the channels being formed using conventional exposure and development processing known in the art.
Abstract:
A capacitive substrate and method of making same in which first and second glass layers are used. A first conductor is formed on a first of the glass layers and a capacitive dielectric material is positioned over the conductor. The second conductor is then positioned on the capacitive dielectric and the second glass layer positioned over the second conductor. Conductive thru-holes are formed to couple to the first and second conductors, respectively, such that the conductors and capacitive dielectric material form a capacitor when the capacitive substrate is in operation.
Abstract:
An LED lighting assembly including a plurality of individual LEDs mounted on a common, bendable heat sinking member designed to remove heat from the LEDs during operation and also to be formed (bent) to provide the desired light direction and intensity. Several such assemblies may be used within an LED lamp, as also provided herein. The lamp is ideal for use within medical and dental environments to assure optimal light onto a patient located at a specified distance from the lamp.