Abstract:
본 발명에 따른 질화물 반도체소자는 이온주입영역을 구비한 실리콘기판; 상기 이온주입영역이 형성된 실리콘기판 상에 형성되는 버퍼층; 상기 버퍼층 상에 형성되는 질화갈륨층을 포함한다. 따라서 본 발명에 따른 질화물 반도체소자 및 그 제조방법은 실리콘 기판 표면에 주기적인 패턴형상으로 이온주입층을 형성함으로써 크랙이 없는 질화갈륨층을 형성할 수 있는 효과가 있다.
Abstract:
A single-crystal substrate for use in manufacturing a gallium-nitride thin film is provided to enhance crystalline of high gallium-nitride thin film and an optical characteristic through a rapid growth of gallium-nitride thin film. A single-crystal substrate(11) for use in manufacturing a gallium-nitride thin film(23) includes a nitrogen ion implantation pattern unit(19) and a nitrogen ion non-implantation section unit(21). The nitrogen ion implantation pattern unit is comprised of sapphire, silicon carbide, zinc oxide, silicon or GaAs, and has a plurality of patterns formed regularly and repeatedly on the same flat face. The nitrogen ion non-implantation section unit is adapted to distinguish between the patterns. A shape of the pattern is a circle, oval, stripe or polygonal shape. Material of the substrate is sapphire, and on the surface of the nitrogen ion implantation pattern unit, a nitride aluminum film is formed. A dose amount of nitrogen ion for the nitrogen ion implantation pattern unit is 1x10^15/cm^2 or 1x10^17/cm^2, and implantation energy is within a range of 10 through 100 keV.
Abstract translation:提供了一种用于制造氮化镓薄膜的单晶衬底,以通过氮化镓薄膜的快速生长来增强高氮化镓薄膜的晶体和光学特性。 用于制造氮化镓薄膜(23)的单晶衬底(11)包括氮离子注入图案单元(19)和氮离子非注入区单元(21)。 氮离子注入图案单元由蓝宝石,碳化硅,氧化锌,硅或GaAs组成,并且具有在同一平面上规则地且重复地形成的多个图案。 氮离子非注入部分单元适于区分图案。 图案的形状是圆形,椭圆形,条状或多边形。 衬底的材料是蓝宝石,并且在氮离子注入图案单元的表面上形成氮化物铝膜。 氮离子注入图案单元的氮离子的剂量为1×10 15 / cm 2或1×10 17 / cm 2,注入能量在10〜100keV的范围内。
Abstract:
PURPOSE: A light emitting diode and a method for manufacturing the same are provided to form an n-type semiconductor for emitting green light and absorbing blue light on an active layer for generating blue light, and secure a high efficiency green light emitting device. CONSTITUTION: A p-type compound semiconductor layer(130) is formed in the upper part of a substrate(110). An active layer(150) is formed in the upper part of the p-type compound semiconductor layer. An active layer emits blue wavelength light. An n-type oxide semiconductor layer(170) made of zinc oxide is formed in the upper part of the active layer. The n-type oxide semiconductor layer absorbs the green wavelength light to emit the blue wavelength light.
Abstract:
실리콘 나노와이어/징크옥사이드 코어/쉘 나노복합체의 제조방법이 제공된다. 본 발명에 따르면 간단한 방법으로 대면적 기판상에 수직으로 정렬된 실리콘 나노와이어/징크옥사이드 코어/쉘 나노복합체를 제조할 수 있으며, 이러한 나노복합체는 표면적이 크고, 상기 실리콘 나노와이어의 수직으로 정렬된 구조를 템플레이트로 징크옥사이드를 형성시킴으로써 단위 면적당 흡착된 염료분자의 농도를 증가시켜 염료감응 태양전지의 상대전극으로 유용하게 사용될 수 있다. 이에 따라서, 본 발명에 따른 태양전지는 표면반사율이 낮고 광변환 효율이 우수하다.
Abstract:
본 발명은 공정이 간단하면서도 에피택셜층 내에 생성된 결함을 최소화할 수 있는 에피택셜층을 형성하는 방법 및 이에 의해 제조된 적층 구조물에 관한 것이다. 본 발명에 따른 에피층 형성방법은 기판 상에 포토레지스트 패턴을 형성하는 단계와, 포토레지스트 패턴을 탄화시켜 마스크 패턴을 형성하는 단계와, 기판과 마스크 패턴이 함께 덮이도록 상기 기판 상에 에피택셜층을 형성하는 단계를 갖는다.
Abstract:
PURPOSE: A method for eliminating a photo resist pattern is provided to irradiate light onto a substrate to increase the temperature of the substrate up to 700°C, thereby certainly eliminating a photoresist pattern and foreign materials from the substrate. CONSTITUTION: A photoresist pattern(100) is formed on a substrate(10). Light is irradiated onto the substrate to increase the temperature of the substrate up to 700°C. The light is supplied from a halogen lamp(200), a quartz tube heater, and a ceramic heater. The photoresist pattern and foreign materials(300) are eliminated from the substrate.
Abstract:
PURPOSE: A method for manufacturing a silicon nano-wire/zinc oxide core/shell nano composite and a solar cell including the nano composite are provided to use the nano composite as the counter electrode of a dye-sensitized solar cell by forming a zinc oxide. CONSTITUTION: A mono-crystalline silicon substrate is undergone ultraviolet/ozone treatment. The substrate is etched using an etching solution. The etching solution is based on the mixture of HF and AgNO_3. The etched substrate is immerged in a HNO_3 solution in order to eliminate silver dendrite from the substrate. A cleaning process and a drying process are implemented to obtain a silicon substrate. Silicon nano-wires are vertically arranged on the silicon substrate. Zinc source is applied to the silicon substrate, and first purging gas is purged on the silicon substrate. Oxygen source is applied to the silicon substrate, and second purging gas is purged on the silicon substrate.