Abstract:
본 발명은 슈퍼커패시터용 나노다공성 전극 및 이의 제조방법에 관한 것으로, 보다 상세하게는, 수소발생이 수반되는 전해도금법을 이용하여 전극 표면 또는 내부에 다공을 형성시킴으로써, 전극의 비표면적을 증가시켜 커패시터의 충방전 용량, 에너지 밀도, 출력 밀도 등을 향상시킬 수 있는 슈퍼커패시터용 나노다공성 전극 및 이의 제조방법에 관한 것이다. 본 발명에 따른 슈퍼커패시터용 나노다공성 전극의 제조방법은 전해도금으로 발생하는 수소를 주형(template)으로 사용하여 나노다공성 전극을 제조함으로써 금속의 사용량을 최소화하여 전극 제조비용을 대폭 줄일 수 있고, 간단한 공정으로 전극의 비표면적을 제어할 수 있을 뿐만 아니라, 비표면적 또한 증가시켜 커패시터의 충방전 용량, 에너지 밀도, 출력 밀도 등을 향상시킬 수 있는 효과가 있다.
Abstract:
The present invention provides a method for forming an Au thin film, which includes the steps of: forming an Ni plating layer by the electroless Ni plating of the surface of an object; forming a Pd-Cu mixed plating layer by the electroless Pd-Cu mixture plating of the Ni plating layer; and forming a first Au thin film layer by substituting Au for Cu elements of a Pd-Cu mixture by a substitution reaction by immersing the Pd-Cu mixed plating layer in Au galvanic electrolytes. [Reference numerals] (S10) Step for removing a copper print circuit substrate oxide film; (S20) Catalyst activation step; (S30) Ni electroless plating step; (S40) Pd electroless plating step; (S50) Pd-Cu mixture electroless plating step; (S60) Gold galvanic replacement reaction step; (S70) Gold electroless plating step
Abstract:
기판 상에 자기조립 단분자막 나노 패턴을 형성하는 단계; 및 자기조립 단분자막 나노 패턴이 형성된 기판에 무전해 도금을 이용하여 자기조립 단분자막 나노 패턴 사이에 금속 선 격자를 형성하거나 자기조립 단분자막 나노 패턴을 시드층으로 사용하여 무전해 전기 도금에 의해 자기조립 단분자막 나노 패턴 상에 금속 선 격자를 형성하는 단계;를 포함하는 것을 특징으로 하는 금속 선 격자 디바이스 제조 방법이 개시되어 있다.
Abstract:
촉매 입자, 수소이온전도성 고분자, 및 상기 촉매 입자 및 상기 수소이온전도성 고분자를 분산 또는 용해할 수 있는 용매 시스템을 혼합하고 교반하여 상기 촉매 입자가 균일하게 분산된 촉매슬러리를 제조하는 단계; 상기 촉매슬러리를 고분자 기재상에 도포하고 건조하여 상기 고분자 기재상에 촉매층을 형성하는 단계; 및 상기 촉매층과 확산층이 접하도록 상기 고분자 기재와 상기 확산층을 겹친 후 열과 압력을 가함으로써 상기 촉매층을 상기 확산층위로 전사시켜 전극을 제조하는 단계를 포함하는 연료전지용 전극 제조방법 및 이에 의하여 제조된 전극을 포함하는 연료전지가 제공된다. 본원 발명에 따른 제조방법은 (1) 동일한 전지성능을 얻기 위하여 촉매 충전량을 획기적으로 낮출 수 있으며, (2) 확산층과 촉매층과의 사이의 계면특성이 매우 균일하며 계비저항을 획기적으로 감소시킬 수 있으며, 또한 (3) 촉매층 형성방법이 연속공정이 가능하며 제조비용을 획기적으로 낮출 수 있는 장점이 있으며, 이로 인해 상업적으로 대량생산에 적합하다.
Abstract:
The present invention relates to a nano-porous electrode for a super capacitor and a manufacturing method thereof, and more specifically, to a nano-porous electrode for a super capacitor and a manufacturing method thereof wherein pores are formed on the surface or inside an electrode using an electrodeposition method accompanied by hydrogen generation, thereby increasing the specific surface area of the electrode and thus improving the charging and discharging capacity, energy density, output density, and the like of a capacitor. The method for manufacturing a nano-porous electrode for a super capacitor according to the present invention manufactures a nano-porous electrode using hydrogen generated by the electrodeposition as a template to minimize the amount of metal used, so that electrode manufacturing costs can be sharply reduced, the specific surface area of the electrode can be adjusted by a simple process, and also the charging and discharging capacity, energy density, output density, and the like of a capacitor can be improved by increasing the specific surface area.
Abstract:
Provided is a process for forming a catalyst layer on a proton exchange membrane of a membrane electrode assembly for a fuel cell, which allows easy control of the amount of catalyst deposition, improves catalytic efficiency and the quality of a fuel cell, and reduces the loss of catalyst. The process for forming a catalyst layer on a proton exchange membrane of a membrane electrode assembly(MEA)(5) for a fuel cell comprises the steps of: treating a proton exchange membrane in a polar solvent containing catalyst particles to allow swelling of the proton exchange membrane; and treating the proton exchange membrane in an aprotic solvent to allow the catalyst particles to be applied onto the proton exchange membrane. The MEA for a fuel cell includes the proton exchange membrane and a fuel diffusion electrode.
Abstract:
Provided is a direct methanol fuel cell which is inhibited in the crossover of methanol by reducing the diffusion velocity of methanol so as to allow the injected methanol to be reacted completely at a catalyst layer and is high in power density. The direct methanol fuel cell comprises a fuel electrode(5); an air electrode(7); a polymer electrolyte membrane(6); a fuel bottle(1); and a fuel diffusion velocity control material layer(3) which is formed between the fuel bottle and the fuel electrode. Preferably the fuel diffusion velocity control material layer is inserted between the current collector(4) and the battery support(2) present between the fuel electrode and the fuel bottle, and is made of a polymer. Preferably the battery support is made of epoxy carbon or epoxy glass.
Abstract:
The present invention relates to a method for coating a surface of a first metal with a second metal, which has a reducing power lower than the first metal. The method comprises a step of: (1) preparing a first solution where the first metal is dispersed in de-ionized water; (2) preparing a second metal electrolyte in which the second metal ion is ionized; (3) adding the metal electrolyte into the first solution so that a spontaneous displacement reaction occurs. [Reference numerals] (AA) Start; (BB) Removing copper oxide films, preparing a first mixture solution to prevent oxidation, and proceeding a process; (CC) Preparing a second mixture solution in which second metal melted and having a better reducing power than the first metal; (DD) Spontaneous displacement reaction occurs by adding copper powders into the second mixture solution; (EE) End
Abstract:
고표면적 분말의 형성 방법에 따르면, 이종의 제1 금속들로 이루어진 금속 이온이 해리된 금속 전해액을 준비한다. 이어서, 상기 제1 금속들보다 높은 환원력을 갖는 제2 금속을 상기 금속 전해액에 침지시켜 제1 자발적 치환 반응을 발생시켜 상기 제1 금속들로 이루어진 금속 합금 분말을 형성한다. 따라서 비표면적이 개선된 고표면적 분말이 형성될 수 있다.
Abstract:
PURPOSE: A formation method for high surface area powder is provided to manufacture an electrode by using a spontaneous substitution reaction process which uses a reducing power difference of a metal, and by using a reaction activation process which is activated by other substances which are generated inside an electrolyte containing chlorine ions. CONSTITUTION: A formation method for high surface area powder comprises the following steps: A metal electrolyte in which metal irons which are composed of first dissimilar metals are dissociated is prepared(S110); Alloy powder which consists of the first metals is extracted by generating a first spontaneous substitution reaction where a second metal which has a reducing power higher than the reducing power of the second metals is dipped into the metal electrolyte solution(S130); The metal electrolyte includes chlorine ions. The step of preparing a metal electrolyte comprises the following steps: Metal chlorides which respectively include a dissimilar metal different from each other are prepared; The metal chlorides are dissociated in a first solution. [Reference numerals] (AA) Start; (BB) End; (S110) Prepare a metal electrolyte including a first metal; (S130) Generate spontaneous substitution by dipping a second metal with a higher reducing power than the first metal in the metal electrolyte