Abstract:
The present invention relates to an organic light emitting diode and a manufacturing method thereof wherein the organic light emitting diode can acquire high photon extraction efficiency by attaching a transparent polymer capable of improving low photon extraction efficiency to an organic light emitting diode device. The organic light emitting diode comprises: a transparent or opaque substrate, a flat insulation film formed on the substrate, an anode which is a repeller and formed on the insulation film, an organic light emitting layer formed by vapor depositing an organic matter on the anode, an opaque cathode formed on the organic light emitting layer, a refractive index controlling layer formed on the cathode, and a polymer layer including a nanostructure of a bend structure formed on the refractive index controlling layer.
Abstract:
An organic light emitting diode according to the present invention includes a substrate; an insulation layer which is formed on the substrate; a bottom electrode which is formed on the insulation layer; an organic material layer which is formed on the bottom electrode; a top semitransparent electrode which is formed on the organic material layer; and a polymer layer which is formed on the top semitransparent electrode. The polymer layer is a thermosetting polymer with a dome shape and includes a fine structure inside.
Abstract:
A light emitting diode manufacturing method using a nano imprint mold and a light emitting diode manufactured by the same are disclosed. The disclosed light emitting diode manufacturing method comprises the steps of forming a first conductive type nitride semiconductor layer, an activation layer, and a second conductive type nitride semiconductor layer on a substrate; forming a transparent electrode on the second conductive type nitride semiconductor layer; forming a nano imprint resist layer on the transparent electrode; pressing a nano imprint mold against the nano imprint resist layer, such that a nano pattern is transferred to the nano imprint resist layer; and etching the nano imprint resist layer and the transparent electrode such that the nano pattern of the nano imprint resist layer is transferred to the transparent electrode. By doing so, a light extracting efficiency is improved and the nano pattern is formed in an efficient and economical manner.
Abstract:
PURPOSE: An organic light emitting diode and a method for manufacturing the same are provided to improve device efficiency by forming an organic active layer and a transparent electrode on a reflection substrate. CONSTITUTION: An organic active layer is formed on a metallic substrate. A transparent electrode is formed on the organic active layer. A planarization layer and an insulating layer are not formed between the metallic substrate and the organic active layer. The surface roughness of the metallic substrate is measured by using an AFM(Atomic Force Microscope). The metallic substrate is used as a reflection electrode. [Reference numerals] (AA) Transparent electrode; (BB) Electron(hole) injection layer; (CC) Electron(hole) transfer layer; (DD) Hole(electron) insulating layer; (EE) Light emitting layer; (FF) Electron(hole) insulating layer; (GG) Hole(electron) transfer layer; (HH) Hole(electron) injection layer; (II) Reflective substrate
Abstract:
PURPOSE: A method for manufacturing a flexible metal substrate, a flexible electronic device and the flexible metal substrate using a corrosion-resistant mother substrate are provided to reduce process costs. CONSTITUTION: A flexible metal substrate(200) is formed on a mother substrate(100) by electroplating. The flexible metal substrate is separated from the mother substrate. The mother substrate has corrosion-resistant against acidic plating solution or basic plating solution. The surface roughness of the mother substrate has 0
Abstract:
PURPOSE: A top emitting organic light emitting diode and a manufacturing method thereof are provided to improve an electrical and optical characteristic of a device by satisfy a high reflection property and using a multi-layered reflective electrode with a superior hole injection feature. CONSTITUTION: A bottom electrode(200), an upper electrode(400), and an organic compound layer are provided on the opaque substrate. The upper electrode faces the bottom electrode. The organic compound layer is arranged between the bottom electrode and the upper electrode. The organic compound layer includes an electron injection layer, an electron-transport layer, a light-emitting layer, a hole-transport layer, and a hole implant layer. The bottom electrode is formed by successively laminating a first metal layer, a second metal layer, and a third metal layer(230), and a transparent conductive oxide layer.