Abstract:
The present invention discloses a method for analyzing phthalate metabolites in biological samples, comprising the following steps of: performing enzyme decomposition of phthalate metabolites in a biological sample; performing trimethylsilylation of the decomposed phthalate metabolites; and performing quantitative analysis of the trimethylsilylated phthalate metabolites.
Abstract:
본발명은연속추출법을이용하여오염토양에존재하는다양한유형의중금속에대한유형별정량분석을실시함에있어서, 연속추출법의각 단계에서추출되는오염토양에대해정량분석을실시하고, 각단계와이전단계의정량분석값의차이를통해각 단계에서추출된특정유형의중금속에대한정량분석값을특정할수 있는레이저어블레이션과연속추출을접목한오염토양내 중금속에대한존재유형별분석방법및 장치에관한것으로서, 본발명에따른레이저어블레이션과연속추출을접목한오염토양내 중금속에대한존재유형별분석방법은복수단계의중금속추출단계를진행하여각 단계별로특정유형의중금속을추출하는연속추출법을이용함에있어서, 각단계의중금속추출단계를통해얻어진오염토양에대해정량분석을실시하여, 각단계의오염토양(이하, '제 n 단계의오염토양'이라칭하며, n은자연수임)에존재하는중금속들의정량분석값을측정하고, 제 n 단계의오염토양에존재하는중금속들의정량분석값과제 n-1 단계의오염토양에존재하는중금속들의정량분석값을대비하여, 각중금속들의정량분석값차이를산출하고, 각중금속들의정량분석값차이를, 제 n 단계를통해추출된제 n 유형의중금속에대한정량분석값으로특정하는것을특징으로한다.
Abstract:
PURPOSE: A quantitation method of organomercury in a biological sample is provided to remove spectral interference factors due to a medium, and to draw reliable result. CONSTITUTION: A quantitation method of organomercury in a biological sample comprises: a step of adding hydrochloric acid to the biological sample and preparing digestive fluid; a step of adding an organic solvent to the digestive fluid and extracting an organic layer; a step of adding a solution of a thiol compound to the extracted organic layer, and extracting a thiol compound layer; a step of performing thermal decomposition of an analyte contained in the thiol compound layer, and contacting a gold collector with vapor generated by thermal decomposition; and a step of heating the gold collector. [Reference numerals] (AA) Absorbance[A]; (BB) Time[minutes]
Abstract:
PURPOSE: An electrode having a nanocomposite active material is provided to improve a charge-discharge rate property of a lithium secondary battery and to solve low output properties and the degradation of cycleability. CONSTITUTION: An electrode having a nanocomposite active material comprises a substrate and an active material layer formed on the substrate. The active material layer includes a nano-structure conductor which is formed on the substrate and consists of metal or metal oxide, and an active material which is formed on the nano-structure conductor and includes nano particles of metal oxides.
Abstract:
PURPOSE: A semiconductor nano optical sensor and a manufacturing method thereof with fast reaction are provided to secure high sensitivity and fast response by arranging semiconductor nano line. CONSTITUTION: A semiconductor nano optical sensor and a manufacturing method thereof with fast reaction includes a substrate(10), a metal catalytic layer(40), and a visible light band semiconductor nano line(50). An upper side of the substrate is composed of a substrate. Two electrodes are separated at specific interval between two substrates. A metal catalytic layer is formed on each electrode. A visible light band semiconductor nano line is formed from the metal catalytic layer on each electrode.
Abstract:
A tin oxide nano-wire based gas sensor and a method for manufacturing the same are provided to be widely used as a NOx sensing sensor which is exhaust gas of an automobile since the sensor has superior sensitivity and high response speed. A tin oxide nanowire-based gas sensor includes a substrate, two lower conductive electrodes(12a,12b), a gold catalytic layer(14), tin oxide nanowires(15), and conductive wires. The two lower conductive electrodes are formed on the substrate apart from each other. The tin oxide nanowires are laminated on the gold catalytic layer of each electrode. The conductive wires are connected to the electrodes so as to transmit an electrical signal. The both tin oxide nanowires laminated on the gold catalytic layer are connected to each other in a network structure where the both nanowires are interconnected to each other with floating between the two electrodes to be apart from the substrate.
Abstract:
유기수은의 선택적 농축을 위한 시료 전처리와 금 아말감 형성과 수은의 원자 흡수 분광 분석을 결합한 생체 시료 내 유기수은의 정량 방법을 개시한다. 본 발명의 유기수은 정량 방법은 (1) 생체 시료에 염산을 가하여 처리한 소화액을 얻는 소화 단계, (2) 유기 용매를 상기 소화액에 가하여 분석 대상물을 유기층으로 분획하는 추출 단계, (3) 상기 추출된 유기층에 티올 화합물의 수용액을 가하여 분석 대상물을 상기 티올 화합물층으로 분획하는 역추출 단계, (4) 상기 역추출액 속에 포함된 분석 대상물을 열분해하여 생성된 증기를 금 포집자와 접촉시키는 금 아말감 형성 단계와 (5) 상기 금 아말감 형성 단계를 거친 금 포집자를 가열하여 생성된 증기에 수은 원자의 흡수 파장대의 빛을 조사하는 원자 흡수 분광 분석 단계를 포함한다. 본 발명의 다른 측면에서는 전술한 유기수은의 정량 방법과 금 아말감 형성-원자 흡수 분광 분석을 결합하여 생체 시료 내 총 수은 중 유기수은의 비중을 정량하는 방법을 개시한다.