Abstract:
The present invention relates to a method for manufacturing a piezoelectric polymer core-shell structure and, more specifically, to a method for manufacturing a piezoelectric polymer core-shell structure, by manufacturing an electrode by depositing a conductive polymer solution on polyurethane acrylate pillars, and depositing a piezoelectric polymer P(VDE-TrFE) solution on the electrode. By an embodiment of the present invention, the method can reduce manufacturing costs and can perform a large area process by being able to copy the polyurethane acrylate pillars several times through one mold. Also, the method of the present invention can be applied in various fields such as not only a piezoelectric device and an energy harvest using the same, but also a nonvolatile memory device and a bio device by manufacturing a vertically aligned nanostructure and a vertically aligned micro structure. [Reference numerals] (AA) Electrode
Abstract:
본 발명은 강유전 고분자 박막을 이용한 정보 저장 매체 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 강유전 고분자 박막을 기판 일면에 형성된 전극층의 상면에 형성하여 정보 저장 및 보존이 가능한, 강유전 고분자 박막을 이용한 정보 저장 매체 및 그 제조방법에 관한 것이다. 본 발명인 강유전 고분자 박막을 이용한 정보 저장 매체는 기판과, 상기 기판 일면에 형성된 전극층과, 상기 전극층 상면에 형성된 VDF와 TrFE가 70:30 내지 80:20 비율인 VDF-TrFE 강유전 고분자 박막을 포함하는 것을 특징으로 한다. 또한, 본 발명은 기판 일면에 전극층을 형성하는 단계와, VDF와 TrFE를 70:30 내지 80:20 비율로 혼합한 VDF-TrFE 펠렛을 준비하는 단계와, 상기 VDF-TrFE 펠렛을 메틸에틸케톤(Methylethylketone) 용매에 용해시키는 단계와, 상기 용해된 용액을 상기 전극층 상면에 코팅하는 단계와, 상기 코팅된 기판을 어닐링(Annealing) 하는 단계로 이루어지는 것을 특징으로 한다.
Abstract:
PURPOSE: An energy gaining system and a manufacturing method thereof are provided to convert external pressure or mechanical vibration into an electric energy. CONSTITUTION: A conductive spiral core electrode(401) has elastic force or elasticity. A ferroelectric polymer layer(402) is selectively formed on a surface of a center electrode. A surface electrode(403) is formed on a surface of the ferroelectric polymer layer. The center electrode includes Fe, Ni, Cr, Ti, Mo, Ag, Au, Al, Cu, W, or TiN.
Abstract:
PURPOSE: A ferroelectric polymer nano-dot device and a dewetting process for the manufacturing thereof are provided to have uniform size and density and to be uniformly patterned. CONSTITUTION: A ferroelectric polymer nano-dot device(200) comprises a substrate(101), a lower electrode(102) and P(VDF-TrFE) nano-dots(201). The substrate is composed of insulating materials. The lower electrode is formed on an upper surface of the substrate. The P(VDF-TrFE) nano-dot is formed on the upper surface of the lower electrode in an anti-glare structure and is composed of P(VDF-TrFE) polymers. The ferroelectric polymer nano-dot device additionally includes an upper electrode(104) on the surface of the nano-dot. A dewetting process for manufacturing ferroelectric Polymer nano-dot device comprises the following steps: preparing a substrate; forming a lower electrode on the upper surface of the substrate; obtaining a P (VDF-TrFE) polymer solution; spreading the upper surface of the lower electrode with the P (VDF-TrFE) polymer solution; and obtaining the P (VDF-TrFE) nano-dot through an annealing process.
Abstract:
본 발명은 압전 고분자 코어-쉘 구조체 및 그의 제조방법에 관한 것으로, 보다 상세하게는 폴리우레탄 아크릴레이트 필러 위에 전도성 폴리머 용액을 증착하여 전극을 제조하고, 상기 전극 위에 압전 고분자 P(VDF-TrFE) 용액을 증착하는 압전 고분자 코어-쉘 구조체를 제조하는 방법에 관한 것이다. 본 발명의 실시예에 의하면 하나의 몰드를 통해 폴리우레탄 아크릴레이트 필러를 여러번 복제할 수 있다는 점에서 제조단가를 낮출 수 있으며 대면적 공정이 가능하다. 또한, 수직 정렬된 나노 구조체 및 마이크로 구조체를 제조함으로써 압전센서와 이를 이용한 에너지 하베스터 뿐만 아니라 비휘발성 메모리소자 및 바이오소자 등의 다양한 분야에 적용 가능하다.
Abstract:
PURPOSE: A method of manufacturing an information storage medium using a ferroelectric polymer thin film is provided to improve a data storage reliability than a ferroelectric media using an oxide by forming a ferroelectric polymer thin film on an upper side of an electrode layer formed on one side of a substrate. CONSTITUTION: An information storage medium using a ferroelectric polymer thin film comprises a substrate (101), an electrode layer (102), and a ferroelectric polymer thin film (103). The electrode layer is formed at one side of the substrate. In the ferroelectric polymer thin film, a rate of VDF and TrFE formed on an upper side of the electrode layer is 70:30 to 80:20.
Abstract:
PURPOSE: A method to fill lead acetate in a titanium dioxide(TiO2) nanotube is provided to easily fill the lead acetate into the TiO2 nanotube by immersing the TiO2 nanotube which is self-aligned into a lead acetate solution, or by dropping the lead acetate solution on the TiO2 nanotube. CONSTITUTION: A TiO2 nanotube(300) filled with lead acetate inside is composed of the TiO2 nanotube and the lead acetate. The TiO2 nanotube grows vertically by being anodized on a titanium(Ti) sheet(110). A lead acetate filling method includes a step of dropping a lead acetate solution on the TiO2 nanotube, and drying the TiO2 nanotube. A ferroelectric nanotube element manufacturing method includes following steps; the anodized TiO2 nanotube is prepared; the lead acetate is filled in the TiO2 nanotube; and a lead titanate nanotube is formed by depositing PbO on the TiO2 nanotube filled with the lead acetate.
Abstract:
PURPOSE: A ferroelectric polymer nano-rod using immersion crystallization and a manufacturing method thereof are provided to obtain firm nano-rod by uniform heat transmission within a solution. CONSTITUTION: A ferroelectric polymer nano-rod using immersion crystallization comprises a P (VDF-TrFE) nano-rod, an upper electrode and a bottom electrode. The upper electrode is vertically formed on the surface of the P (VDF-TrFE) nanorod. The bottom electrode is formed at the lower part of the P (VDF-TrFE) nano-rod. A manufacturing method of the ferroelectric Polymer nano-rods using an immersion method crystallization comprises the following steps: preparing a porous template(100); coating the porous template with a P (VDF-TrFE) solution(101); transmitting the porous template to a vacuum chamber(102); inducing crystallization while separating dried P(VDF-TrFE) nano-structures from the porous template by vertically soaking along the porous template; and obtaining P (VDF-TrFE) nano-rods(106) by washing and drying the separated P (VDF-TrFE) nano-structure.