Abstract:
PURPOSE: A method for manufacturing metal silicide nanowire is provided to simply obtain plenty of the metal silicide nanowire and adjusting the composition of the metal silicide nanowire in a wide range. CONSTITUTION: Single crystalline silicon metal nanowire(100) is synthesized using a vapor-phase transporting method. The synthesized silicon metal nanowire is annealed under oxygen atmosphere, and a silicon oxide layer(110) is formed on the surface of the silicon metal nanowire. The silicon oxide layer is eliminated using a wet etching method. A metal-rich single crystalline silicon metal nanowire, which is an intermetallic compound or a solid solution is prepared.
Abstract:
A method for manufacturing iron cobalt silicide nanowires is provided to produce high-purity and high-quality single crystal iron cobalt silicide(Fe_(1-x)Co_xSi) having physical properties suitable for applications to nano devices. An iron cobalt silicide single crystal nanowire has a composition of Fe_(1-x)Co_xSi, wherein x is a value ranging from 0.01 to 0.99. A method for manufacturing the iron cobalt silicide single crystal nanowire includes a step of heat-treating a precursor placed at the front end part of a reactor and a silicon substrate placed at the rear end part of the reactor under an inert gas atmosphere to form the Fe_(1-x)Co_xSi nanowire on the silicon substrate, wherein the precursor is a mixture of cobalt halide and iron halide. Further, the nanowire is ferromagnetic material and has helical spin order.
Abstract:
A manufacturing method of metal silicide nanowire and a metal silicide nanowire manufactured thereby are provided to obtain high quality monocrystallic nanowire which is adequate for various applications in the field of nano-element in a simple process by employing vapor-phase transport process. A manufacturing method of metal silicide nanowire comprises steps of: a) placing a silicon substrate(31) on the rear end(12) of a reaction passage(10), and putting metal precursor in the fore end(11) of the reaction passage; b) forming a flow of inert gas from the fore end to the rear end of the reaction passage; c) maintaining the temperature of the fore end so as to evaporate the metal precursor while maintaining the temperature of the rear end so as to decompose the metal precursor; and d) building metal silicide nanowire on the silicon substrate by decomposition of the evaporated halogenated metal precursor on the flowing of the inert gas forward to the rear end of the reaction passage. The reaction passage has the fore end and the rear end, which are independently equipped with a heating and a temperature control equipment(21,22), respectively. The reaction passage is composed of quartz, and the passage also has a boat-shaped vessel(33) of alumina for putting the metal precursor into the center of the fore end, and a silicon substrate(31) at the center of the rear end. The reaction passage is maintained at 100 torr to an ambient pressure. The metal precursor is selected from compounds represented by formula 1 of MXn, wherein M is selected from Co, Fe and Cr, X is selected from F, Cl, Br and I, and n is 2 or 3. The metal silicide nanowire is selected from monocrystallic cobalt silicide, iron silicide and chromium silicide nanowires.
Abstract:
PURPOSE: A method for manufacturing metal silicide single crystalline nano-wires and the metal silicide single crystalline nano-wires are provided to adjust the short axial diameters of the nano-wires and secure free-standing properties under a catalyst-free condition and a template-free condition. CONSTITUTION: Iron silicide nano-wires are formed on a substrate by thermally treating a first precursor, a second precursor, and a substrate under an inert gas atmosphere. The first precursor is arranged at the front end part of a reactor and contains iron halide. The second precursor is arranged at the rear end part of the reactor and contains silicon and carbon. The substrate is arranged at the rear end part of the reactor. The relative growth speed of the short axial direction and the long axial direction of the iron silicide nano-wires is controlled according to the weight ratio of the silicon and the carbon. The short axial diameters of the iron silicide nano-wires are controlled without the change of a composition and a crystalline structure according to the weight ratio of the silicon and the carbon.
Abstract:
본 발명은 조성을 포함한 상(phase)을 제어할 수 있는 규화금속 나노와이어의 제조방법에 관한 것으로, 상세하게, 본 발명에 따른 제조방법은 단결정체의 규화금속 나노와이어(I)를 산화 분위기에서 어닐링(annealing)하여 상기 나노와이어(I) 표면에 산화규소층을 형성한 후, 상기 산화규소층을 제거하여 단결정체의 금속-리치(metal-rich)한 규화금속 나노와이어어(II)를 제조하는 특징이 있다. 규화금속, 나노와이어, 조성, 상, 산화규소, 준안정
Abstract:
본 발명은 할로겐화금속을 선구물질로 이용한 강자성 금속 단결정 나노와이어의 제조방법 및 강자성 금속 단결정 나노와이어를 제공하며, 상세하게는 반응로의 전단부에 위치시킨 선구물질과 반응로의 후단부에 위치시킨 기판을 불활성 기체가 흐르는 분위기에서 열처리하여 상기 기판 상에 강자성 금속 단결정 나노와이어를 형성시키는 제조 방법 및 본 발명의 제조 방법에 의해 제조된 강자성 금속 단결정 나노와이어를 제공한다. 본 발명의 제조방법은 촉매를 사용하지 않는 기상이송법을 이용하여 강자성 금속 단결정 나노와이어를 제조할 수 있어 그 공정이 간단하고 재현성이 있으며, 제조된 나노와이어가 결함 및 불순물을 포함하지 않는 완벽한 단결정 상태의 고순도 고품질 강자성 금속 나노와이어인 장점을 가지며, 기판 상에 응집되어 있지 않은 균일한 크기의 강자성 금속 나노와이어를 대량생산할 수 있는 장점이 있다. 또한 산화방지막이 표면에 형성되어 강자성 금속의 산화가 방지된 안정한 강자성 금속 나노와이어인 장점이 있다. 강자성 금속(Ferromagnetic metal), 나노와이어(nanowire), 단결정 (Single-crystalline), 자성(magnetic), Co, Ni, Fe
Abstract:
A ferromagnetism monocrystal metal nano wire not cohered on a mono crystal substrate is provided to have high quality and high purity, to include no deformity and impurity and to be mass-produced into a uniform-size. A ferromagnetism monocrystal metal nano wire is manufactured using a vapor phase growth in a noncatalytic condition using a precursor including a metal halide. A passivation layer is formed on a surface of the ferromagnetic metal monocrystal nanowire and a silica film. The silica film has a thickness of 1 to 5 nm. The ferromagnetism monocrystal metal nano wire is Co, Ni or Fe. The ferromagnetic metal monocrystal nanowire is a Co monocrystal nanowire of a hexagonal closepacked structure. The silica film is formed on a surface of the Co monocrystal nanowire.
Abstract:
본 발명은 무-촉매, 무-템플레이트(template-free) 조건으로, 단축 직경의 길이가 엄밀하게 조절되며 기판에 대해 일정한 방향성을 가지며, 기판 상 독립적으로 서 있는(free-standing) 규화철 나노와이어의 제조방법 및 이를 이용하여 제조된 규화철 나노와이어에 관한 것으로, 상세하게, 본 발명에 따른 제조방법은 반응로의 전단부에 위치한 할로겐화철을 함유하는 제1선구물질, 상기 반응로의 후단부에 위치한 규소(Si) 및 탄소(C)를 함유하는 제2선구물질, 상기 반응로의 후단부에 위치한 기판을 불활성 기체가 흐르는 분위기에서 열처리하여 상기 기판 상에 규화철 나노와이어가 제조되며, 상기 제2선구물질의 규소:탄소의 질량비에 의해 상기 기판상 형성되는 상기 규화철 나노와이어의 단축 방향과 장축 방향의 상대적 성장 속도가 제어되는 특징이 있다.
Abstract:
A method for manufacturing zinc oxide nanowires is provided to produce single crystal zinc oxide nanowires having uniform size, shape, and density vertically grown on an ITO substrate using a chemical vapor deposition method. A method for manufacturing zinc oxide nanowires on an ITO substrate includes the steps of: physically covering the ITO substrate with a metal foil having a macro hole; mixing ZnO and Zn powders; and manufacturing the zinc oxide nanowires by heat-treating the ITO glass covered with the metal foil and a crucial containing the ZnO/Zn mixture powder in an atmosphere of inert gas and oxygen gas. The ZnO and Zn powders are mixed in a weight ratio of ZnO : Zn ranging from 1:0.2 to 1:5.