Abstract:
A semiconductor half-bridge module (10) comprises a first substrate (28) with at least one metallization layer (34) on at least one side, a first line (38a) of semiconductor chips (24a, 24b) electrically and mechanically bonded to a metallization layer (34) of the first substrate (28), a second line (38b) of semiconductor chips (24a, 24b) electrically and mechanically bonded to a metallization layer (34) of the first substrate (28), and a second substrate (30) mechanically bonded with one side to a metallization layer (34) of the first substrate (28) between the first line (38a) and the second line (38b), the second substrate (30) having at least one metallization layer (34e) on a second opposite side providing a DC contact (22) of the module (10). An electrical contact (26) of the semiconductor chips (24a, 24b) of the first line (38a) and/or of the second line (38b) is directly electrically connected to a metallization layer of the second substrate (30). The semiconductor chips (24a, 24b) form a first switch (14) and a second switch (16) of a half-bridge (12), such that a current between the first switch (14) and the second switch (16) flows below the second substrate (30).
Abstract:
The invention relates to a circuit arrangement (10) in which a power functional device (16) and a conductor element (18) are mounted, the arrangement (10) comprising a substrate (12), a wiring layer (14) provided on the substrate (12) and electrically connected to the functional device (16) and to the conductor element (18) and an intermediate electric contact device, which is mounted on the wiring layer (14) to provide on the side opposite to the wiring layer a contact region for contacting the conductor element (18). According to the invention the conductor element (18) is contacting the intermediate electric contact device in the contact region which is opposite to an area, in which the electric contact device is fixed to the wiring layer. The invention further relates to a corresponding manufacturing method of a circuit arrangement.
Abstract:
The present invention relates to a method of generating a power semiconductor module, the method comprising the steps of: a) Providing a carrier layer (12); b) Providing a substrate (14) having a terminal connection area (22); c) Soldering the substrate (14) to the carrier layer (12) by forming a solder layer (20); wherein d) the solder layer (20) is formed such, that a pre-defined cavity (28) is provided in the solder layer (20) adjacent to the substrate (14) and located opposite to the terminal connection area (22); and e) Welding a terminal (24) to the terminal connection area (22) of the substrate (14). The present invention provides a method of generating a power semiconductor module which is especially cost-saving to perform and allows a reliable generation of high quality modules.
Abstract:
Ein erfindungsgemässe Leistungshalbleitermodul (10) weist eine erste Hauptelektrode (12), eine zweite Hauptelektrode (14) und einen Kontrollanschluss (16) auf. Weiter weist das Leistungshalbleitermodul (10) steuerbare Leistungshalbleiterbauelemente (18) auf, welche zwischen der ersten Hauptelektrode (12) und der zweiten Hauptelektrode (14) angeordnet sind. Erfindungsgemäss ist das Leistungshalbleitermodul (10) dadurch gekennzeichnet, dass zumindest ein Teil der steuerbaren Leistungshalbleiterbauelemente (18) in einer Ringanordnung (28, 28, 28") angeordnet sind, wobei die steuerbaren Leistungshalbleiterbauelemente (18) der Ringanordnung (28, 28', 28") zumindest annähernd entlang einer ersten Kreislinie (30) der Ringanordnung (28, 28', 28") angeordnet sind und eine Kontrollleiterbahn (32) der Ringanordnung (28, 28', 28") auf der ersten Hauptelektrode (12) angeordnet ist, wobei die Kontrolleiterbahn (32) zumindest annähernd entlang einer zweiten Kreislinie (34) der Ringanordnung (28, 28', 28") verläuft, und die zweite Kreislinie (34) konzentrisch zur ersten Kreislinie (30) verläuft.
Abstract:
Ein Leistungshalbleitermodul umfasst eine Anzahl N parallel zu einer Basisebene angeordneter Leistungshalbleiter-Schaltelemente, von denen jedes eine Anzahl an Schaltelement-Kontakten aufweist, umfassend einen Steuerkontakt, einen ersten Leistungskontakt und einen zweiten Leistungskontakt wobei mittels einer zwischen Steuerkontakt und erstem Leistungskontakt anliegenden Steuerspannung ein Strom zwischen den Leistungskontakten schaltbar ist; eine Kontaktierungsanordnung zur Kontaktierung der Schaltelement-Kontakte, umfassend: ein erstes Verbindungsblech, welches N erste Kontakte aufweist, über welche es elektrisch leitend mit den Steuerkontakten der N Leistungshalbleiter-Schaltelemente verbunden ist, ein zweites Verbindungsblech, welches N zweite Kontakte aufweist, über welche es elektrisch leitend mit den ersten Leistungskontakten der N Leistungshalbleiter-Schaltelemente verbunden ist, ein drittes Verbindungsblech, welches n dritte Kontakte aufweist, über welche es elektrisch leitend mit zweiten Leistungskontakten zumindest einer Teilmenge enthaltend n N der N Leistungshalbleiter-Schaltelemente verbunden ist; und wobei zum Anlegen einer Steuer-Sollspannung zwischen den Steuerkontakten und den ersten Leistungskontakten der Leistungshalbleiter-Schaltelemente ein Referenzanschluss am zweiten Verbindungsblech vorgesehen ist, welcher über die zweiten Kontakte elektrisch leitend mit den ersten Leistungskontakten der N Leistungshalbleiter-Schaltelemente verbunden ist.
Abstract:
The system according to the invention comprises at least two power semiconductor chips (1, 2, 3, 4) being connected in parallel and comprising each a gate terminal for switching the power semiconductor chip (1, 2, 3, 4) in a blocking- state by a first gate voltage and for switching the power semiconductor chip (1, 2, 3, 4) in a conducting- state by a second gate voltage. The system comprises further a control means (16, 57) adapted for applying the first or the second gate voltage to the gate terminals of the at least two power semiconductor chips (1, 2, 3, 4). The control means (16) is adapted for applying a third gate voltage to the gate terminal of the at least one remaining power semiconductor chip (1, 2, 3, 4) when a power semiconductor chip (1, 2, 3, 4) fails, and that the third gate voltage is higher than the second gate voltage.
Abstract:
Ein Halbleitermodul (10), umfasst wenigstens ein Substrat (36), das wenigstens einen Halbleiterchip (38) trägt, eine Basisplatte (12), auf der das wenigstens eine Substrat (36) derart befestigt ist, dass Wärme aus dem Substrat (36) in die Basisplatte (12) abführbar ist, wenigstens ein Befestigungselement (14) zum Befestigen der Basisplatte (12) an einem Kühlkörper (16), wobei das Befestigungselement (14) durch die Basisplatte (12) geführt ist, ein Federelement (22), das von dem Befestigungselement (14) gegen die Basisplatte (12) gedrückt wird, wenn das Befestigungselement (14) am Kühlkörper (16) befestigt wird, und ein plastisch verformbares Abstandselement (28), das zwischen dem Federelement (22) und der Basisplatte (12) aufgenommen ist und das dazu ausgeführt ist, einen Teil der Kraft, die beim Befestigen des Befestigungselement (14) am Kühlkörper (16) zwischen dem Federelement (22) und der Basisplatte (12) entsteht, aufzunehmen. Das Federelement (22) drückt bei einer ersten Kontaktstelle (30) über das Abstandselement (28) auf die Basisplatte (12) und das Federelement (22) drückt an einer zweiten Kontaktstelle (34) gegen die Basisplatte (12), wenn das Befestigungselement (14) am Kühlkörper (16) befestigt wird.
Abstract:
A semiconductor module (10) comprises at least one semiconductor chip (12) comprising at least one semiconductor switch (14) having a collector (18), emitter (22) and gate (20), a collector terminal (24) connected to the collector (18), gate terminal (26) connected to the gate (20), an emitter terminal (28) connected to the emitter (22) via an emitter conductor path (30) having an emitter inductance (32), an auxiliary emitter terminal (38) connected to the emitter (22), a first conductor path (34) connected to the emitter (22), and a second conductor path (36) connected to the emitter (22) having a different mutually inductive coupling with the emitter conductor path (30) as the first conductor path (34). The first conductor path (34) and the second conductor path (36) are connectable to the auxiliary emitter terminal (38) and/or the first conductor path (34) is connected to the auxiliary emitter terminal (38) and the second conductor path (36) is connected to a second auxiliary emitter terminal (44). The semiconductor switch (14) is an IGBT and each of the first conductor path (34) and the second conductor path (36) comprises bridging points (40) for connecting the respective conductor path to the auxiliary emitter terminal (38).
Abstract:
The present invention provides a substrate (1) for mounting multiple power transistors (21, 30) thereon, comprising a first metallization (3), on which the power transistors (21, 30) are commonly mountable with their collector or emitter, and which extends in at least one line (5) on the substrate (1), a second metallization (9), which extends in an area (11) next to the at least one line (5) of the first metallization (3), for connection to the remaining ones of the emitters or collectors of the power transistors (21, 30), and a third metallization (13) for connection to gate contact pads (25) of the power transistors (21, 30), whereby the third metallization (13) comprises a gate contact (15) and at least two gate metallization areas (16, 18), which are interconnectable by way of bonding means (19), the gate metallization areas (16, 18) are arranged in parallel to the at least one line (5) and spaced apart in a longitudinal direction of the at least one line (5), and at least one gate metallization area is provided as a gate island (16) surrounded on the substrate (1) by the second metallization (9). The second metallization (9) is adapted for mounting multiple power transistors (21, 30) with their collectors or emitters thereon, whereby the power transistors (21, 30) have the same orientation like the power transistors (21, 30) mounted on the first metallization (3). The substrate (1 ) comprises a fourth metallization (42), which extends in an area (44) next to the second metallization (9), for connection to the remaining ones of the emitters or collectors of the power transistors (21, 30) mountable on the second metallization (9). A fifth metallization (46) is provided for connection to gate contact pads (25) of the power transistors (21, 30) mountable on the second metallization (9), whereby the fifth metallization (46) comprises at least two gate metallization areas (16, 18), which are interconnectable by way of bonding means (19), the gate metallization areas (16, 18) are arranged in parallel to the at least one line (5) and spaced apart in a longitudinal direction of the at least one line (5), and at least one gate metallization area is provided as a gate island (16) surrounded on the substrate (1 ) by the fourth metallization (42).
Abstract:
The present invention relates to a method of connecting two components by ultrasonic welding for producing a power semiconductor module, said method comprising the steps of: a) Aligning the components to be welded to form a welding interface (16); b) Aligning a welding tool (18) to the aligned components; c) Removably arranging a trapping material (20) at least partly encompassing the welding interface (16), whereby the trapping material (20) is a foam; and d) Connecting the components by activating the welding tool (18). The method like described above provides an easy and cost- saving measure in order to prevent particle contamination when performing a welding process such as particularly an ultrasonic welding process sue to scattered particles (20).