Abstract:
Disclosed is a method for the direct amination of hydrocarbons into amino hydrocarbons by reacting a feedstock stream E containing at least one hydrocarbon and at least one amination reagent so as to obtain a reaction mixture R containing amino hydrocarbon and hydrogen in a reaction zone RZ, and electrochemically separating at least some of the hydrogen produced during the reaction from the reaction mixture R by means of a gas-tight membrane-electrode assembly comprising at least one membrane selectively conducting protons and at least one electrode catalyst on each side of the membrane, wherein at least some of the hydrogen is oxidized to protons on the anode catalyst on the retentate side of the membrane, and after penetrating the membrane, some of the protons on the permeate side are b1) reduced to hydrogen on the cathode catalyst by applying a voltage, and some of the protons b2) are reacted with oxygen on the cathode catalyst to obtain water, thereby generating electricity, the oxygen being fed from an oxygen-containing stream O that is brought in contact with the permeate side of the membrane.
Abstract:
Disclosed is a method for the direct amination of hydrocarbons into amino hydrocarbons by reacting a feedstock stream E containing at least one hydrocarbon and at least one amination reagent so as to obtain a reaction mixture R containing amino hydrocarbons and hydrogen in a reaction zone RZ, and electrochemically separating at least some of the hydrogen produced during the reaction from the reaction mixture R by means of a gas-tight membrane-electrode assembly comprising at least one membrane selectively conducting protons and at least one electrode catalyst on each side of the membrane, wherein at least some of the hydrogen is oxidized to protons on the anode catalyst on the retentate side of the membrane, and the protons are reduced to hydrogen on the cathode catalyst on the permeate side after penetrating the membrane.
Abstract:
Disclosed is a method for the direct amination of hydrocarbons into amino hydrocarbons by reacting a feedstock stream E containing at least one hydrocarbon and at least one amination reagent so as to obtain a reaction mixture R containing amino hydrocarbon and hydrogen in a reaction zone RZ, and electrochemically separating at least some of the hydrogen produced during the reaction from the reaction mixture R by means of a gas-tight membrane-electrode assembly comprising at least one membrane selectively conducting protons and at least one electrode catalyst on each side of the membrane, wherein at least some of the hydrogen is oxidized to protons on the anode catalyst on the retentate side of the membrane, and the protons are reacted with oxygen on the cathode catalyst on the permeate side after penetrating the membrane so as to obtain water, the oxygen being fed from an oxygen-containing stream O that is brought in contact with the permeate side of the membrane.
Abstract:
The invention relates to a method for the direct amination of hydrocarbons to form amino hydrocarbons, comprising the following steps: conversion of an educt flow E containing at least one hydrocarbon and at least one amination reagent into a reaction mixture R containing amino hydrocarbons and hydrogen, and b) electrochemical separation of at least part of the hydrogen created during the conversion, from the reaction mixture R, by means of a gas-tight membrane electrode assembly comprising at least one selectively proton-conducting membrane and at least one electrode catalyst on each side of the membrane. On the retenate side of the membrane, at least part of the hydrogen is oxidised on the anode catalyst to form protons and, after passing through the membrane, on the permeate side, on the cathode catalyst, the protons are b1) reduced to hydrogen and/or b2) converted to water with oxygen, the oxygen originating from a flow O containing oxygen, brought into contact with the permeate side of the membrane.
Abstract:
A process for aminating hydrocarbons with ammonia in the presence of catalyst (i) which catalyzes the amination, which comprises supplying oxidizing agent to the reaction mixture and reacting the oxidizing agent with hydrogen which is formed in the amination in the presence of a catalyst (ii) which catalyzes this reaction with hydrogen.