Abstract:
PROBLEM TO BE SOLVED: To provide new compositions and methods of using those compositions as bonding compositions.SOLUTION: The compositions comprise a cycloolefin copolymer dispersed or dissolved in a solvent system, and can be used to bond an active wafer to a carrier wafer or substrate to assist in protecting the active wafer and its active sites during subsequent processing and handling. The compositions form bonding layers that are chemically and thermally resistant, but that can also be softened or dissolved to allow the wafers to slide or be pulled apart at the appropriate stage in the fabrication process.
Abstract:
CYCLIC OLEFIN COMPOSITIONS FOR TEMPORARY WAFER BONDING AbstractNew compositions and methods of using those compositions as bonding compositions are provided. The compositions comprise a cycloolefin copolymer dispersed or dissolved in a solvent system, and can be used to bond an active wafer to a carrier wafer or substrate to assist in protecting the active wafer and its active sites during subsequent processing and handling. The compositions form bonding layers that are chemically and thermally resistant, but that can also be softened or dissolved to allow the wafers to slide or be pulled apart at the appropriate stage in the fabrication process.Figure 1
Abstract:
The invention broadly relates to release layer compositions that enable thin wafer handling during microelectronics manufacturing. Preferred release layers are formed from compositions comprising a polyamic acid or polyimide dissolved or dispersed in a solvent system, followed by curing and/or solvent removal at about 250° C. to about 350° C. for less than about 10 minutes, yielding a thin film. This process forms the release compositions into polyimide release layers that can be used in temporary bonding processes, and laser debonded after the desired processing has been carried out.
Abstract:
Novel thermoplastic polyhydroxyether-based compositions for use as a laser-releasable composition for temporary bonding and laser debonding processes are provided. The inventive compositions can be debonded using various UV lasers, leaving behind little to no debris. The layers formed from these compositions possess good thermal stabilities and are soluble in commonly-used organic solvents (e.g., cyclopentanone). The compositions can also be used as build-up layers for RDL formation.
Abstract:
The invention broadly relates to cyclic olefin polymer bonding compositions and release compositions, to be used independently or together, that enable thin wafer handling during microelectronics manufacturing, especially during a full-wafer mechanical debonding process. The release compositions comprise compositions made from siloxane polymers and copolymers blended in a polar solvent, and that are stable at room temperature for longer than one month. The cyclic olefin polymer bonding compositions provide high thermal stability, can be bonded to fully-treated carrier wafers, can be mechanically or laser debonded after high-temperature heat treatment, and are easily removed with an industrially-acceptable solvent. Wafers bonded according to the invention demonstrate lower overall post-grind stack TTV compared to other commercial bonding materials and can survive 200° C. PECVD processing.
Abstract:
New compositions and methods of using those compositions as bonding compositions are provided. The compositions comprise a cycloolefin copolymer dispersed or dissolved in a solvent system, and can be used to bond an active wafer to a carrier wafer or substrate to assist in protecting the active wafer and its active sites during subsequent processing and handling. The compositions form bonding layers that are chemically and thermally resistant, but that can also be softened or dissolved to allow the wafers to slide or be pulled apart at the appropriate stage in the fabrication process.
Abstract:
The invention broadly relates to release layer compositions that enable thin wafer handling during microelectronics manufacturing. Preferred release layers are formed from compositions comprising a polyamic acid or polyimide dissolved or dispersed in a solvent system, followed by curing and/or solvent removal at about 250°C to about 350°C for less than about 10 minutes, yielding a thin film. This process forms the release compositions into polyimide release layers that can be used in temporary bonding processes, and laser debonded after the desired processing has been carried out.
Abstract:
The invention broadly relates to release layer compositions that enable thin wafer handling during microelectronics manufacturing. Preferred release layers are formed from compositions comprising a polyamic acid or polyimide dissolved or dispersed in a solvent system, followed by curing and/or solvent removal at about 250° C. to about 350° C. for less than about 10 minutes, yielding a thin film. This process forms the release compositions into polyimide release layers that can be used in temporary bonding processes, and laser debonded after the desired processing has been carried out.
Title translation:CYCLISCHE OLEFINPOLYMERZUSAMMENSETZUNGEN UND POLYSILOXANFREISETZUNGSSCHICHTEN ZUR VERWENDUNG IN VERFAHREN ZUMVÜÜBERGEHENDENWAFERBONDEN
Abstract:
New compositions and methods of using those compositions as bonding compositions are provided. The compositions comprise a cycloolefin copolymer dispersed or dissolved in a solvent system, and can be used to bond an active wafer to a carrier wafer or substrate to assist in protecting the active wafer and its active sites during subsequent processing and handling. The compositions form bonding layers that are chemically and thermally resistant, but that can also be softened or dissolved to allow the wafers to slide or be pulled apart at the appropriate stage in the fabrication process.