Abstract:
PROBLEM TO BE SOLVED: To provide novel, wet developable anti-reflective coating compositions; and to provide methods of using those compositions.SOLUTION: The compositions comprise a polymer and/or oligomer having acid functional groups and dissolved in a solvent system along with a crosslinker and a photoacid generator. The acid functional group is a carboxylic acid, while the crosslinker is a vinyl ether crosslinker. In use, the compositions are applied to a substrate and thermally crosslinked. Upon exposure to light, the cured compositions will decrosslink, rendering them soluble in typical photoresist developing solutions (e.g., alkaline developers).
Abstract:
Novel, wet developable anti-reflective coating compositions and methods of using those compositions are provided. The compositions comprise a polymer and/or oligomer having acid functional groups and dissolved in a solvent system along with a crosslinker and a photoacid generator. The preferred acid functional group is a carboxylic acid, while the preferred crosslinker is a vinyl ether crosslinker. In use, the compositions are applied to a substrate and thermally crosslinked. Upon exposure to light, the cured compositions will decrosslink, rendering them soluble in typical photoresist developing solutions (e.g., alkaline developers).
Abstract:
Compositions for directed self-assembly patterning techniques are provided which avoid the need for separate anti-reflective coatings and brush neutral layers in the process. Methods for directed self-assembly are also provided in which a self-assembling material, such as a directed self-assembly block copolymer, can be applied directly to the silicon hardmask neutral layer and then self-assembled to form the desired pattern. Directed self-assembly patterned structures are also disclosed herein.