Abstract:
Printed wiring board assemblies are described that include printed wiring boards having at least one thermally conductive plane. In addition, the printed wiring boards can also include edge plating on at least a portion of an edge of the printed wiring board. The printed wiring boards can also include heat spreaders, heat sinks and/or thermally conductive heat paths to dissipate heat from the printed wiring board assembly. In many instances, the heat spreaders include microfoils. In one embodiment, the invention includes at least one circuit layer, at least one dielectric layer, at least one thermally conductive plane and edge plating that conducts the at least one thermally conductive plane.
Abstract:
Processes for manufacturing printed wiring boards including electrically conductive constraining cores are disclosed. Several of the processes enable precise alignment of tooling holes used by tools to perform processes with respect to various panels and subassemblies used to form finished printed wiring boards. Modifications to Gerber files that can increase manufacturing yield and provide the ability to detect faulty printed wiring boards in a panelized array of printed wiring 'boards are also discussed. One embodiment of the invention includes aligning the weave of a woven panel of electrically conductive material relative to a tool surface using at least a pair of references and forming tooling holes in the panel of electrically conductive material.
Abstract:
Printed wiring boards (100) and methods of manufacturing printed wiring boards are disclosed. In one aspect of the invention, the printed wiring boards include electrically conductive constraining cores (106) having at least one resin filled channel (116, 118). The resin filled channels perform a variety of functions that can be associated with electrical isolation and increased manufacturing yields.
Abstract:
Processes for manufacturing printed wiring boards including electrically conductive constraining cores are disclosed. Several of the processes enable precise alignment of tooling holes used by tools to perform processes with respect to various panels and subassemblies used to form finished printed wiring boards. Modifications to Gerber files that can increase manufacturing yield and provide the ability to detect faulty printed wiring boards in a panelized array of printed wiring 'boards are also discussed. One embodiment of the invention includes aligning the weave of a woven panel of electrically conductive material relative to a tool surface using at least a pair of references and forming tooling holes in the panel of electrically conductive material.
Abstract:
Prepregs (124), laminates (120, 122), printed wiring board structures and processes for constructing materials and printed wiring boards that enable the construction of printed wiring boards with improved thermal properties. In one embodiment, the prepregs include substrates impregnated with electrically and thermally conductive resins (132). In other embodiments, the prepregs have substrate materials that include carbon. In other embodiments, the prepregs include substrates impregnated with thermally conductive resins. In other embodiments, the printed wiring board structures include electrically and thermally conductive laminates that can act as ground and/or power planes.