Abstract:
A system and/or network (50) for connecting at least one server (52) to at least one storage device (56) via a Fibre Channel (54). Such a system is capable of providing connection redundancy, high speed data rates, multiple operating systems and, hot plugging. Furthermore, the system allows for a large number of devices to be connected to the Fibre Channel. The devices, being servers, storage devices, or other system related appliances can be separated by more than 10 miles and still communicate via the Fibre Channel at high data rates.
Abstract:
A host computer including a posted write cache for a disk drive system where the posted write cache includes battery backup to protect against potential loss of data in case of a power failure, and also including means for performing a method for determining if live data is present in the posted write cache upon power-up. The posted write cache is further mirrored and parity-checked to assure data validity. Performance increase is achieved since during normal operation data is written to the much faster cache and a completion indication is returned, and the data is flushed to the slower disk drive system at a more opportune time. Batteries provide power to the posted write cache in the event of a power failure. Upon subsequent power-up, a cache signature previously written in the posted write cache indicates that live data still resides in the posted write cache. If the cache signature is not present and the batteries are not fully discharged, a normal power up condition exists. If the cache signature is not present and the batteries are fully discharged, then the user is warned of possible data loss. A configuration identification code assures a proper correspondence between the posted write cache board and the disk drive system. A mirror test executed to verify data validity. Temporary and permanent error conditions are monitored so that posted write operations are only enabled when error-free operation is assured.
Abstract:
A system and/or network (50) for connecting at least one server (52) to at least one storage device (56) via a Fibre Channel (54). Such a system is capable of providing connection redundancy, high speed data rates, multiple operating systems and, hot plugging. Furthermore, the system allows for a large number of devices to be connected to the Fibre Channel. The devices, being servers, storage devices, or other system related appliances can be separated by more than 10 miles and still communicate via the Fibre Channel at high data rates.
Abstract:
A posting memory used in conjunction with a drive array to increase the performance of fault tolerant disk array write operations. When the posting memory flushes dirty data back to the disk array, the posting memory coalesces or gathers contiguous small write or partial stripe write requests into larger, preferably full stripe writes. This reduces the number of extra read operations necessary to update parity information. In this manner, the actual number of reads and writes to the disk array to perform the transfer of write data to the disk array is greatly reduced. In addition, when the posting memory is full, the posting memory delays small, i.e., partial stripe writes but allows full stripe writes or greater to pass directly to the disk array. This reduces the frequency of partial stripe writes and increases disk array performance.
Abstract:
A host computer including a posted write cache for a disk drive system where the posted write cache includes battery backup to protect against potential loss of data in case of a power failure, and also including means for performing a method for determining if live data is present in the posted write cache upon power-up. The posted write cache is further mirrored and parity-checked to assure data validity. Performance increase is achieved since during normal operation data is written to the much faster cache and a completion indication is returned, and the data is flushed to the slower disk drive system at a more opportune time. Batteries provide power to the posted write cache in the event of a power failure. Upon subsequent power-up, a cache signature previously written in the posted write cache indicates that live data still resides in the posted write cache. If the cache signature is not present and the batteries are not fully discharged, a normal power up condition exists. If the cache signature is not present and the batteries are fully discharged, then the user is warned of possible data loss. A configuration identification code assures a proper correspondence between the posted write cache board and the disk drive system. A mirror test executed to verify data validity. Temporary and permanent error conditions are monitored so that posted write operations are only enabled when error-free operation is assured.
Abstract:
A posting memory used in conjunction with a drive array to increase the performance of fault tolerant disk array write operations. When the posting memory flushes dirty data back to the disk array, the posting memory coalesces or gathers contiguous small write or partial stripe write requests into larger, preferably full stripe writes. This reduces the number of extra read operations necessary to update parity information. In this manner, the actual number of reads and writes to the disk array to perform the transfer of write data to the disk array is greatly reduced. In addition, when the posting memory is full, the posting memory delays small, i.e., partial stripe writes but allows full stripe writes or greater to pass directly to the disk array. This reduces the frequency of partial stripe writes and increases disk array performance.