Abstract:
LED chip packaging assembly that facilitates an integrated method for mounting LED chips as a group to be pre-wired to be electrically connected to each other through a pattern of extendable metal wiring lines is provided. LED chips which are electrically connected to each other through extendable metal wiring lines, replace pick and place mounting and the wire bonding processes of the LED chips, respectively. Wafer level MEMS technology is utilized to form parallel wiring lines suspended and connected to various contact pads. Bonding wires connecting the LED chips are made into horizontally arranged extendable metal wiring lines which can be in a spring shape, and allowing for expanding and contracting of the distance between the connected LED chips. A tape is further provided to be bonded to the LED chips, and extended in size to enlarge distance between the LED chips to exceed the one or more prearranged distances.
Abstract:
A light-emitting structure includes a first epitaxial unit; a second epitaxial unit disposed next to the first epitaxial unit; a crossover metal layer including a first protruding portion laterally overlapping the first epitaxial unit and the second epitaxial unit wherein the first protruding portion is electrically connected with the first epitaxial unit and the second epitaxial unit; a conductive connecting layer disposed below the first epitaxial unit and the second epitaxial unit and surrounding the first protruding portion; and an electrode arranged on the conductive connecting layer.
Abstract:
LED chip packaging assembly that facilitates an integrated method for mounting LED chips as a group to be pre-wired to be electrically connected to each other through a pattern of extendable metal wiring lines is provided. LED chips which are electrically connected to each other through extendable metal wiring lines, replace pick and place mounting and the wire bonding processes of the LED chips, respectively. Wafer level MEMS technology is utilized to form parallel wiring lines suspended and connected to various contact pads. Bonding wires connecting the LED chips are made into horizontally arranged extendable metal wiring lines which can be in a spring shape, and allowing for expanding and contracting of the distance between the connected LED chips. A tape is further provided to be bonded to the LED chips, and extended in size to enlarge distance between the LED chips to exceed the one or more prearranged distances.
Abstract:
The present application discloses a light-emitting array, comprising a first light-emitting chip; a second light-emitting chip; and a conductive line electrically connected to the first light-emitting chip and the second light-emitting chip, wherein the conductive line includes a first segment and a second segment having a radius curvature different from that of the first segment.
Abstract:
A light-emitting structure includes an epitaxial structure including a plurality of trenches; a conductive connecting layer, disposed under the epitaxial structure; a first isolation layer; a crossover metal layer, disposed under the first isolation layer and including a plurality of protruding portions protruding into the epitaxial structure through the plurality of trenches; a second isolation layer, disposed under the crossover metal layer; a bonding layer disposed under the second isolation layer; a substrate, disposed under the bonding layer; and an electrode, electrically connected to the conductive connecting layer and disposed adjacent to the epitaxial structure in a cross-sectional view.
Abstract:
A sensing device includes a first III-V compound stack and a second III-V compound stack. The first III-V compound stack has a first sensing area, and the second III-V compound stack has a second sensing area. A passivation layer fully covers the second sensing area. The first III-V compound stack is physically separated from the second III-V compound stack, and has material compositions and structures same as the second III-V compound stack.
Abstract:
LED chip packaging assembly that facilitates an integrated method for mounting LED chips as a group to be pre-wired to be electrically connected to each other through a pattern of extendable metal wiring lines is provided. LED chips which are electrically connected to each other through extendable metal wiring lines, replace pick and place mounting and the wire bonding processes of the LED chips, respectively. Wafer level MEMS technology is utilized to form parallel wiring lines suspended and connected to various contact pads. Bonding wires connecting the LED chips are made into horizontally arranged extendable metal wiring lines which can be in a spring shape, and allowing for expanding and contracting of the distance between the connected LED chips. A tape is further provided to be bonded to the LED chips, and extended in size to enlarge distance between the LED chips to exceed the one or more prearranged distances.
Abstract:
The present application discloses a light-emitting array, comprising a first light-emitting chip; a second light-emitting chip; and a conductive line electrically connected to the first light-emitting chip and the second light-emitting chip, wherein the conductive line includes a first segment and a second segment having a radius curvature different from that of the first segment.
Abstract:
An LED array having N light-emitting diode units (N≧3) comprises a permanent substrate, a bonding layer on the permanent substrate, a second conductive layer on the bonding layer, a second isolation layer on the second conductive layer, a crossover metal layer on the second isolation layer, a first isolation layer on the crossover metal layer, a conductive connecting layer on the first isolation layer, an epitaxial structure on the conductive connecting layer, and a first electrode layer on the epitaxial structure. The light-emitting diode units are electrically connected with each other by the crossover metal layer.
Abstract:
LED chip packaging assembly that facilitates an integrated method for mounting LED chips as a group to be pre-wired to be electrically connected to each other through a pattern of extendable metal wiring lines is provided. LED chips which are electrically connected to each other through extendable metal wiring lines, replace pick and place mounting and the wire bonding processes of the LED chips, respectively. Wafer level MEMS technology is utilized to form parallel wiring lines suspended and connected to various contact pads. Bonding wires connecting the LED chips are made into horizontally arranged extendable metal wiring lines which can be in a spring shape, and allowing for expanding and contracting of the distance between the connected LED chips. A tape is further provided to be bonded to the LED chips, and extended in size to enlarge distance between the LED chips to exceed the one or more prearranged distances.